Inertial frame of reference
In classical physics and special relativity, an inertial frame of reference is a frame of reference in which objects exhibit inertia: they remain at rest or in uniform motion relative to the frame until acted upon by external forces. In such a frame, the laws of nature can be observed without the need to correct for acceleration.
All frames of reference with zero acceleration are in a state of constant rectilinear motion with respect to one another. In such a frame, an object with zero net force acting on it, is perceived to move with a constant velocity, or, equivalently, Newton's first law of motion holds. Such frames are known as inertial. Some physicists, like Isaac Newton, originally thought that one of these frames was absolute — the one approximated by the fixed stars. However, this is not required for the definition, and it is now known that those stars are in fact moving, relative to one another.
According to the [|principle of special relativity], all physical laws look the same in all inertial reference frames, and no inertial frame is privileged over another. Measurements of objects in one inertial frame can be converted to measurements in another by a simple transformation — the Galilean transformation in Newtonian physics or the Lorentz transformation in special relativity; these approximately match when the relative speed of the frames is low, but differ as it approaches the speed of light.
By contrast, a non-inertial reference frame is accelerating. In such a frame, the interactions between physical objects vary depending on the acceleration of that frame with respect to an inertial frame. Viewed from the perspective of classical mechanics and special relativity, the usual physical forces caused by the interaction of objects have to be supplemented by fictitious forces caused by inertia.
Viewed from the perspective of general relativity theory, the fictitious forces are attributed to geodesic motion in spacetime.
Due to Earth's rotation, its surface is not an inertial frame of reference. The Coriolis effect can deflect certain forms of motion as seen from Earth, and the centrifugal force will reduce the effective gravity at the equator. Nevertheless, for many applications the Earth is an adequate approximation of an inertial reference frame.
Introduction
The motion of a body can only be described relative to something else—other bodies, observers, or a set of spacetime coordinates. These are called frames of reference. According to the first postulate of special relativity, all physical laws take their simplest form in an inertial frame, and there exist multiple inertial frames interrelated by uniform translation:This simplicity manifests itself in that inertial frames have self-contained physics without the need for external causes, while physics in non-inertial frames has external causes. The principle of simplicity can be used within Newtonian physics as well as in special relativity:
However, this definition of inertial frames is understood to apply in the Newtonian realm and ignores relativistic effects.
In practical terms, the equivalence of inertial reference frames means that scientists within a box moving with a constant absolute velocity cannot determine this velocity by any experiment. Otherwise, the differences would set up an absolute standard reference frame. According to this definition, supplemented with the constancy of the speed of light, inertial frames of reference transform among themselves according to the Poincaré group of symmetry transformations, of which the Lorentz transformations are a subgroup. In Newtonian mechanics, inertial frames of reference are related by the Galilean group of symmetries.
Newton's inertial frame of reference
Absolute space
Newton posited an absolute space considered well-approximated by a frame of reference stationary relative to the fixed stars. An inertial frame was then one in uniform translation relative to absolute space. However, some "relativists", even at the time of Newton, felt that absolute space was a defect of the formulation, and should be replaced.The expression inertial frame of reference was coined by Ludwig Lange in 1885, to replace Newton's definitions of "absolute space and time" with a more operational definition:
The inadequacy of the notion of "absolute space" in Newtonian mechanics is spelled out by Blagojevich:
The utility of operational definitions was carried much further in the special theory of relativity. Some historical background including Lange's definition is provided by DiSalle, who says in summary:
Newtonian mechanics
Classical theories that use the Galilean transformation postulate the equivalence of all inertial reference frames. The Galilean transformation transforms coordinates from one inertial reference frame,, to another,, by simple addition or subtraction of coordinates:where r0 and t0 represent shifts in the origin of space and time, and v is the relative velocity of the two inertial reference frames. Under Galilean transformations, the time t2 − t1 between two events is the same for all reference frames and the distance between two simultaneous events is also the same.
Image:Inertial frames.svg|250px|thumbnail|Figure 1: Two frames of reference moving with relative velocity. Frame S' has an arbitrary but fixed rotation with respect to frame S. They are both inertial frames provided a body not subject to forces appears to move in a straight line. If that motion is seen in one frame, it will also appear that way in the other.
Within the realm of Newtonian mechanics, an inertial frame of reference, or inertial reference frame, is one in which Newton's first law of motion is valid. However, the principle of special relativity generalizes the notion of an inertial frame to include all physical laws, not simply Newton's first law.
Newton viewed the first law as valid in any reference frame that is in uniform motion relative to absolute space; as a practical matter, "absolute space" was considered to be the fixed stars In the theory of relativity the notion of absolute space or a privileged frame is abandoned, and an inertial frame in the field of classical mechanics is defined as:
Hence, with respect to an inertial frame, an object or body accelerates only when a physical force is applied, and, in the absence of a net force, a body at rest will remain at rest and a body in motion will continue to move uniformly—that is, in a straight line and at constant speed. Newtonian inertial frames transform among each other according to the Galilean group of symmetries.
If this rule is interpreted as saying that straight-line motion is an indication of zero net force, the rule does not identify inertial reference frames because straight-line motion can be observed in a variety of frames. If the rule is interpreted as defining an inertial frame, then being able to determine when zero net force is applied is crucial. The problem was summarized by Einstein:
There are several approaches to this issue. One approach is to argue that all real forces drop off with distance from their sources in a known manner, so it is only needed that a body is far enough away from all sources to ensure that no force is present. A possible issue with this approach is the historically long-lived view that the distant universe might affect matters. Another approach is to identify all real sources for real forces and account for them. A possible issue with this approach is the possibility of missing something, or accounting inappropriately for their influence, perhaps, again, due to Mach's principle and an incomplete understanding of the universe. A third approach is to look at the way the forces transform when shifting reference frames. Fictitious forces, those that arise due to the acceleration of a frame, disappear in inertial frames and have complicated rules of transformation in general cases. Based on the universality of physical law and the request for frames where the laws are most simply expressed, inertial frames are distinguished by the absence of such fictitious forces.
Newton enunciated a principle of relativity himself in one of his corollaries to the laws of motion:
This principle differs from the [|special principle] in two ways: first, it is restricted to mechanics, and second, it makes no mention of simplicity. It shares the special principle of the invariance of the form of the description among mutually translating reference frames. The role of fictitious forces in classifying reference frames is pursued further below.
Special relativity
, like Newtonian mechanics, postulates the equivalence of all inertial reference frames. However, because special relativity postulates that the speed of light in free space is invariant, the transformation between inertial frames is the Lorentz transformation, not the Galilean transformation which is used in Newtonian mechanics.The invariance of the speed of light leads to counter-intuitive phenomena, such as time dilation, length contraction, and the relativity of simultaneity. The predictions of special relativity have been extensively verified experimentally. The Lorentz transformation reduces to the Galilean transformation as the speed of light approaches infinity or as the relative velocity between frames approaches zero.
Examples
Simple example
Consider a situation common in everyday life. Two cars travel along a road, both moving at constant velocities. See Figure 1. At some particular moment, they are separated by 200 meters. The car in front is traveling at 22 meters per second and the car behind is traveling at 30 meters per second. If we want to find out how long it will take the second car to catch up with the first, there are three obvious "frames of reference" that we could choose.First, we could observe the two cars from the side of the road. We define our "frame of reference" S as follows. We stand on the side of the road and start a stop-clock at the exact moment that the second car passes us, which happens to be when they are a distance apart. Since neither of the cars is accelerating, we can determine their positions by the following formulas, where is the position in meters of car one after time t in seconds and is the position of car two after time t.
Notice that these formulas predict at t = 0 s the first car is 200m down the road and the second car is right beside us, as expected. We want to find the time at which. Therefore, we set and solve for, that is:
Alternatively, we could choose a frame of reference S′ situated in the first car. In this case, the first car is stationary and the second car is approaching from behind at a speed of. To catch up to the first car, it will take a time of, that is, 25 seconds, as before. Note how much easier the problem becomes by choosing a suitable frame of reference. The third possible frame of reference would be attached to the second car. That example resembles the case just discussed, except the second car is stationary and the first car moves backward towards it at.
It would have been possible to choose a rotating, accelerating frame of reference, moving in a complicated manner, but this would have served to complicate the problem unnecessarily. One can convert measurements made in one coordinate system to another. For example, suppose that your watch is running five minutes fast compared to the local standard time. If you know that this is the case, when somebody asks you what time it is, you can deduct five minutes from the time displayed on your watch to obtain the correct time. The measurements that an observer makes about a system depend therefore on the observer's frame of reference.