History of science


The history of science covers the development of science from ancient times to the present. It encompasses all three major branches of science: natural, social, and formal. Protoscience, early sciences, and natural philosophies such as alchemy and astrology that existed during the Bronze Age, Iron Age, classical antiquity and the Middle Ages, declined during the early modern period after the establishment of formal disciplines of science in the Age of Enlightenment.
The earliest roots of scientific thinking and practice can be traced to Ancient Egypt and Mesopotamia during the 3rd and 2nd millennia BCE. These civilizations' contributions to mathematics, astronomy, and medicine influenced later Greek natural philosophy of classical antiquity, wherein formal attempts were made to provide explanations of events in the physical world based on natural causes. After the fall of the Western Roman Empire, knowledge of Greek conceptions of the world deteriorated in Latin-speaking Western Europe during the early centuries of the Middle Ages, but continued to thrive in the Greek-speaking Byzantine Empire. Aided by translations of Greek texts, the Hellenistic worldview was preserved and absorbed into the Arabic-speaking Muslim world during the Islamic Golden Age. The recovery and assimilation of Greek works and Islamic inquiries into Western Europe from the 10th to 13th century revived the learning of natural philosophy in the West. Traditions of early science were also developed in ancient India and separately in ancient China, the Chinese model having influenced Vietnam, Korea and Japan before Western exploration. Among the Pre-Columbian peoples of Mesoamerica, the Zapotec civilization established their first known traditions of astronomy and mathematics for producing calendars, followed by other civilizations such as the Maya.
Natural philosophy was transformed by the Scientific Revolution that transpired during the 16th and 17th centuries in Europe, as new ideas and discoveries departed from previous Greek conceptions and traditions. The New Science that emerged was more mechanistic in its worldview, more integrated with mathematics, and more reliable and open as its knowledge was based on a newly defined scientific method. More "revolutions" in subsequent centuries soon followed. The chemical revolution of the 18th century, for instance, introduced new quantitative methods and measurements for chemistry. In the 19th century, new perspectives regarding the conservation of energy, age of Earth, and evolution came into focus. And in the 20th century, new discoveries in genetics and physics laid the foundations for new sub disciplines such as molecular biology and particle physics. Moreover, industrial and military concerns as well as the increasing complexity of new research endeavors ushered in the era of "big science," particularly after World War II.

Approaches to history of science

The nature of the history of science - including both the definition of science and whether the English word "science" is a misleading term for pre-modern scholarship as well as non-scholarly knowledge of the natural world - is a topic of ongoing debate and sometimes significant friction between practicing scientists and professional historians. The history of science is often seen as a linear story of progress,
but historians have come to see the story as more complex.
Alfred Edward Taylor has characterised lean periods in the advance of scientific discovery as "periodical bankruptcies of science".
Science is a human activity, and scientific contributions have come from people from a wide range of different backgrounds and cultures. Historians of science increasingly see their field as part of a global history of exchange, conflict and collaboration.
The relationship between science and religion has been variously characterized in terms of "conflict", "harmony", "complexity", and "mutual independence", among others. Events in Europe such as the Galileo affair of the early 17th century – associated with the scientific revolution and the Age of Enlightenment – led scholars such as John William Draper to postulate a conflict thesis, suggesting that religion and science have been in conflict methodologically, factually and politically throughout history. The "conflict thesis" has since lost favor among the majority of contemporary scientists and historians of science. However, some contemporary philosophers and scientists, such as Richard Dawkins, still subscribe to this thesis.
Historians have emphasized that trust is necessary for agreement on claims about nature. In this light, the 1660 establishment of the Royal Society and its code of experiment – trustworthy because witnessed by its members – has become an important chapter in the historiography of science. Many people in modern history were excluded from elite scientific communities and characterized by the science establishment as inferior. Historians in the 1980s and 1990s described the structural barriers to participation and began to recover the contributions of overlooked individuals. Historians have also investigated the mundane practices of science such as fieldwork and specimen collection, correspondence, drawing, record-keeping, and the use of laboratory and field equipment.

Prehistory

In prehistoric times, knowledge and technique were passed from generation to generation in an oral tradition. For instance, the domestication of maize for agriculture has been dated to about 9,000 years ago in southern Mexico, before the development of writing systems. Similarly, archaeological evidence indicates the development of astronomical knowledge in preliterate societies.
The oral tradition of preliterate societies had several features, the first of which was its fluidity. New information was constantly absorbed and adjusted to new circumstances or community needs. There were no archives or reports. This fluidity was closely related to the practical need to explain and justify a present state of affairs. Another feature was the tendency to describe the universe as just sky and earth, with a potential underworld. They were also prone to identify causes with beginnings, thereby providing a historical origin with an explanation. There was also a reliance on a "medicine man" or "wise woman" for healing, knowledge of divine or demonic causes of diseases, and in more extreme cases, for rituals such as exorcism, divination, songs, and incantations. Finally, there was an inclination to unquestioningly accept explanations that might be deemed implausible in more modern times while at the same time not being aware that such credulous behaviors could have posed problems.
The development of writing enabled humans to store and communicate knowledge across generations with much greater accuracy. Its invention was a prerequisite for the development of philosophy and later science in ancient times. Moreover, the extent to which philosophy and science would flourish in ancient times depended on the efficiency of a writing system.

Ancient Near East and North East Africa

The earliest roots of science can be traced to the Ancient Near East and North East Africa in particular to Ancient Egypt and Mesopotamia.

Ancient Egypt

Archaeological evidence has suggested that the Ancient Egyptian counting system had origins in Sub-Saharan Africa. Also, fractal geometry designs which are widespread among Sub-Saharan African cultures are also found in Egyptian architecture and cosmological signs.The Ishango bone, according to scholar Alexander Marshack, may have influenced the later development of mathematics in Egypt as, like some entries on the Ishango bone, Egyptian arithmetic also made use of multiplication by 2; this however, is disputed. Megalithic structures located in Nabta Playa, Upper Egypt featured astronomy, calendar arrangements in alignment with the heliacal rising of Sirius and supported calibration the yearly calendar for the annual Nile flood. These practices have been linked with the emergence of cosmology in Old Kingdom Egypt.

Number system and geometry

Starting, the ancient Egyptians developed a numbering system that was decimal in character and had oriented their knowledge of geometry to solving practical problems such as those of surveyors and builders. Their development of geometry was itself a necessary development of surveying to preserve the layout and ownership of farmland, which was flooded annually by the Nile. The 3-4-5 right triangle and other rules of geometry were used to build rectilinear structures, and the post and lintel architecture of Egypt.

Disease and healing

Egypt was also a center of alchemy research for much of the Mediterranean. According to the medical papyri, the ancient Egyptians believed that disease was mainly caused by the invasion of bodies by evil forces or spirits. Thus, in addition to medicine, therapies included prayer, incantation, and ritual. The Ebers Papyrus, written, contains medical recipes for treating diseases related to the eyes, mouth, skin, internal organs, and extremities, as well as abscesses, wounds, burns, ulcers, swollen glands, tumors, headaches, and bad breath. The Edwin Smith Papyrus, written at about the same time, contains a surgical manual for treating wounds, fractures, and dislocations. The Egyptians believed that the effectiveness of their medicines depended on the preparation and administration under appropriate rituals. Medical historians believe that ancient Egyptian pharmacology, for example, was largely ineffective. Both the Ebers and Edwin Smith papyri applied the following components to the treatment of disease: examination, diagnosis, treatment, and prognosis, which display strong parallels to the basic empirical method of science and, according to G. E. R. Lloyd, played a significant role in the development of this methodology.

Calendar

The ancient Egyptians even developed an official calendar that contained twelve months, thirty days each, and five days at the end of the year. Unlike the Babylonian calendar or the ones used in Greek city-states at the time, the official Egyptian calendar was much simpler as it was fixed and did not take lunar and solar cycles into consideration.