Thermal radiation


Thermal radiation is electromagnetic radiation emitted by the thermal motion of particles in matter. All matter with a temperature greater than absolute zero emits thermal radiation. The emission of energy arises from a combination of electronic, molecular, and lattice oscillations in a material. Kinetic energy is converted to electromagnetism due to charge-acceleration or dipole oscillation. At room temperature, most of the emission is in the infrared spectrum, though above around 525 °C enough of it becomes visible for the matter to visibly glow. This visible glow is called incandescence. Thermal radiation is one of the fundamental mechanisms of heat transfer, along with conduction and convection.
The primary method by which the Sun transfers heat to the Earth is thermal radiation. This energy is partially absorbed and scattered in the atmosphere, the latter process being the reason why the sky is visibly blue. Much of the Sun's radiation transmits through the atmosphere to the surface where it is either absorbed or reflected.
Thermal radiation can be used to detect objects or phenomena normally invisible to the human eye. Thermographic cameras create an image by sensing infrared radiation. These images can represent the temperature gradient of a scene and are commonly used to locate objects at a higher temperature than their surroundings. In a dark environment where visible light is at low levels, infrared images can be used to locate animals or people due to their body temperature. Cosmic microwave background radiation is another example of thermal radiation.
Blackbody radiation is a concept used to analyze thermal radiation in idealized systems. This model applies if a radiating object meets the physical characteristics of a black body in thermodynamic equilibrium. Planck's law describes the spectrum of blackbody radiation, and relates the radiative heat flux from a body to its temperature. Wien's displacement law determines the most likely frequency of the emitted radiation, and the Stefan–Boltzmann law gives the radiant intensity. Where blackbody radiation is not an accurate approximation, emission and absorption can be modeled using quantum electrodynamics.

Overview

Thermal radiation is the emission of electromagnetic waves from all matter that has a temperature greater than absolute zero. Thermal radiation reflects the conversion of thermal energy into electromagnetic energy. Thermal energy is the kinetic energy of random movements of atoms and molecules in matter. It is present in all matter of nonzero temperature. These atoms and molecules are composed of charged particles, i.e., protons and electrons. The kinetic interactions among matter particles result in charge acceleration and dipole oscillation. This results in the electrodynamic generation of coupled electric and magnetic fields, resulting in the emission of photons, radiating energy away from the body. Electromagnetic radiation, including visible light, will propagate indefinitely in vacuum.
The characteristics of thermal radiation depend on various properties of the surface from which it is emanating, including its temperature and its spectral emissivity, as expressed by Kirchhoff's law. The radiation is not monochromatic, i.e., it does not consist of only a single frequency, but comprises a continuous spectrum of photon energies, its characteristic spectrum. If the radiating body and its surface are in thermodynamic equilibrium and the surface has perfect absorptivity at all wavelengths, it is characterized as a black body. A black body is also a perfect emitter. The radiation of such perfect emitters is called black-body radiation. The ratio of any body's emission relative to that of a black body is the body's emissivity, so a black body has an emissivity of one.
The absorptivity, emissivity, reflectivity, and transmissivity of all bodies are dependent on the wavelength of the radiation. Due to reciprocity, absorptivity and emissivity for any particular wavelength are equal at equilibrium – a good absorber is necessarily a good emitter, and a poor absorber is a poor emitter. The temperature determines the wavelength distribution of the electromagnetic radiation.
The distribution of power that a black body emits with varying frequency is described by Planck's law. At any given temperature, there is a frequency fmax at which the power emitted is a maximum. Wien's displacement law, and the fact that the frequency is inversely proportional to the wavelength, indicates that the peak frequency fmax is proportional to the absolute temperature T of the black body. The photosphere of the sun, at a temperature of approximately 6000 K, emits radiation principally in the visible portion of the electromagnetic spectrum. Earth's atmosphere is partly transparent to visible light, and the light reaching the surface is absorbed or reflected. Earth's surface emits the absorbed radiation, approximating the behavior of a black body at 300 K with spectral peak at fmax. At these lower frequencies, the atmosphere is largely opaque and radiation from Earth's surface is absorbed or scattered by the atmosphere. Though about 10% of this radiation escapes into space, most is absorbed and then re-emitted by atmospheric gases. It is this spectral selectivity of the atmosphere that is responsible for the planetary greenhouse effect, contributing to global warming and climate change in general.

History

Ancient Greece

es are known to date back to about 700 BC. One of the first accurate mentions of burning glasses appears in Aristophanes's comedy The Clouds, written in 423 BC. According to the Archimedes' heat ray anecdote, Archimedes is purported to have developed mirrors to concentrate heat rays in order to burn attacking Roman ships during the Siege of Syracuse, but no sources from the time have been confirmed. Catoptrics is a book attributed to Euclid on how to focus light in order to produce heat, but the book might have been written in 300 AD.

Renaissance

During the Renaissance, Santorio Santorio came up with one of the earliest thermoscopes. In 1612, he published his results on the heating effects from the Sun and his attempts to measure heat from the Moon.
Earlier, in 1589, Giambattista della Porta reported on the heat felt on his face, emitted by a remote candle and facilitated by a concave metallic mirror. He also reported the cooling felt from a solid ice block. Della Porta's experiment would be replicated many times with increasing accuracy. It was replicated by astronomers Giovanni Antonio Magini and Christopher Heydon in 1603, and supplied instructions for Rudolf II, Holy Roman Emperor who performed it in 1611. In 1660, della Porta's experiment was updated by the Accademia del Cimento using a thermometer invented by Ferdinand II, Grand Duke of Tuscany.

Enlightenment

In 1761, Benjamin Franklin wrote a letter describing his experiments on the relationship between color and heat absorption. He found that darker color clothes got hotter when exposed to sunlight than lighter color clothes. One experiment he performed consisted of placing square pieces of cloth of various colors out in the snow on a sunny day. He waited some time and then measured that the black pieces sank furthest into the snow of all the colors, indicating that they got the hottest and melted the most snow.

Caloric theory

considered that radiation of heat was concerned with the condition of the surface of a physical body rather than the material of which it was composed. Lavoisier described a poor radiator to be a substance with a polished or smooth surface as it possessed its molecules lying in a plane closely bound together thus creating a surface layer of caloric fluid which insulated the release of the rest within. He described a good radiator to be a substance with a rough surface as only a small proportion of molecules held caloric in within a given plane, allowing for greater escape from within. Count Rumford would later cite this explanation of caloric movement as insufficient to explain the radiation of cold, which became a point of contention for the theory as a whole.
In his first memoir, Augustin-Jean Fresnel responded to a view he extracted from a French translation of Isaac Newton's Optics. He says that Newton imagined particles of light traversing space uninhibited by the caloric medium filling it, and refutes this view by saying that a body under illumination would increase indefinitely in heat.
In Marc-Auguste Pictet's famous experiment of 1790, it was reported that a thermometer detected a lower temperature when a set of mirrors were used to focus "frigorific rays" from a cold object.
In 1791, Pierre Prevost a colleague of Pictet, introduced the concept of radiative equilibrium, wherein all objects both radiate and absorb heat. When an object is cooler than its surroundings, it absorbs more heat than it emits, causing its temperature to increase until it reaches equilibrium. Even at equilibrium, it continues to radiate heat, balancing absorption and emission.
The discovery of infrared radiation is ascribed to astronomer William Herschel. Herschel published his results in 1800 before the Royal Society of London. Herschel used a prism to refract light from the sun and detected the calorific rays, beyond the red part of the spectrum, by an increase in the temperature recorded on a thermometer in that region.

Electromagnetic theory

At the end of the 19th century, it was shown that the transmission of light or of radiant heat was allowed by the propagation of electromagnetic waves. Television and radio broadcasting waves are types of electromagnetic waves with specific wavelengths. All electromagnetic waves travel at the same speed; therefore, shorter wavelengths are associated with high frequencies. All bodies generate and receive electromagnetic waves at the expense of heat exchange.
In 1860, Gustav Kirchhoff published a mathematical description of thermal equilibrium. By 1884 the emissive power of a perfect blackbody was inferred by Josef Stefan using John Tyndall's experimental measurements, and derived by Ludwig Boltzmann from fundamental statistical principles. This relation is known as Stefan–Boltzmann law.