Baler
A baler, or hay baler, is a piece of farm machinery used to compress a cut and raked crop into compact bales that are easy to handle, transport, and store. Often, bales are configured to dry and preserve some intrinsic value of the plants bundled. Different types of balers are commonly used, each producing a different type of balerectangular or cylindrical, of various sizes, bound with twine, strapping, netting, or wire.
Industrial balers are also used in material recycling facilities, primarily for baling metal, plastic, or paper for transport.
History
Before the 19th century, hay was cut by hand and most typically stored in haystacks using hay forks to rake and gather the scythed grasses into optimally sized heapsneither too large, promoting conditions favorable for spontaneous combustion, nor too small, which would mean much of the pile is susceptible to rotting. These haystacks lifted most of the plant fibers up off the ground, letting air in and water drain out, so the grasses could dry and cure, to retain nutrition for livestock feed at a later time.In the 1860s, mechanical cutting devices were developed; from these came modern devices including mechanical mowers and balers. In 1872, a reaper that used a knotter device to bundle and bind hay was invented by Charles Withington; this was commercialized in 1874 by Cyrus McCormick. In 1936, Innes invented an automatic baler that tied bales with twine using Appleby-type knotters from a John Deere grain binder; in 1938, Edwin Nolt filed a patent for an improved version that was more reliable.
The first round baler was probably invented in the late 19th century and one was shown in Paris by Pilter. This was a portable machine designed for use with threshing machines.
Round baler
The most common type of baler in industrialized countries today is the round baler. It produces cylinder-shaped "round" or "rolled" bales. The design has a "thatched roof" effect that withstands weather. Grass is rolled up inside the baler using rubberized belts, fixed rollers, or a combination of the two. When the bale reaches a predetermined size, either netting or twine is wrapped around it to hold its shape. The back of the baler swings open, and the bale is discharged. The bales are complete at this stage, but they may also be wrapped in plastic sheeting by a bale wrapper, either to keep hay dry when stored outside or convert damp grass into silage. Variable-chamber large round balers typically produce bales from in diameter and up to in width. The bales can weigh anywhere from, depending upon size, material, and moisture content. Common modern small round balers produce bales in diameter and in width, generally weighing from.Originally conceived by Ummo Luebben circa 1910, the first round baler did not see production until 1947 when Allis-Chalmers introduced the Roto-Baler. Marketed for the water-shedding and light weight properties of its hay bales, AC had sold nearly 70,000 units by the end of production in 1960.
The next major innovation began in 1965 when a graduate student at Iowa State University, Virgil Haverdink, sought out Wesley F. Buchele, a professor of Agricultural Engineering, seeking a research topic for a master thesis. Over the next year, Buchele and Haverdink developed a new design for a large round baler, completed and tested in 1966, and thereafter dubbed the Buchele–Haverdink large round baler. The large round bales were about in diameter, long, and they weighed about after they driedabout 80 kg/m3 . The design was promoted as a "Whale of a Bale" and Iowa State University now explains the innovative design as follows:
In the summer of 1969, the Australian Econ Fodder Roller baler came out, a design that made a ground-rolled bale. In September of that same year, The Hawkbilt Company of Vinton, Iowa, contacted Dr. Buchele about his design, then fabricated a large ground-rolling round baler which baled hay that had been laid out in a windrow, and began manufacturing large round balers in 1970.
In 1972, Gary Vermeer of Pella, Iowa, designed and fabricated a round baler after the design of the A-C Roto-Baler, and the Vermeer Company began selling its model 605the first modern round baler. The Vermeer design used belts to compact hay into a cylindrical shape as is seen today.
In the early 1980s, collaboration between Walterscheid and Vermeer produced the first effective uses of CV joints in balers, and later in other farm machinery. Due to the heavy torque required for such equipment, double Cardan joints are primarily used. Former Walterscheid engineer Martin Brown is credited with "inventing" this use for universal joints.
By 1975, fifteen American and Canadian companies were manufacturing large round balers.
Transport, handling, and feeding
Short-haul transport and on-field handling
Due to the ability for round bales to roll away on a slope, they require specific treatment for safe transport and handling. Small round bales can typically be moved by hand or with lower-powered equipment. Due to their size and their weight, which can be a ton or more, large round bales require special transport and moving equipment.The most important tool for large round bale handling is the bale spear, or spike, which is usually mounted on the back of a tractor or the front of a skid-steer loader. It is inserted into the approximate center of the bale, then lifted, and the bale is hauled away. Once at the destination, the bale is set down and the spear pulled out. Careful placement of the spear in the center is needed or the bale can spin around and touch the ground while in transport, causing a loss of control. When used for wrapped bales that are to be stored further, the spear makes a hole in the wrapping that must be sealed with plastic tape to maintain a hermetic seal.
Alternatively, a grapple fork may be used to lift and transport large round bales. The grapple fork is a hydraulically driven implement attached to the end of a tractor's bucket loader. When the hydraulic cylinder is extended, the fork clamps downward toward the bucket, much like a closing hand. To move a large round bale, the tractor approaches the bale from the side and places the bucket underneath the bale. The fork is then clamped down across the top of the bale, and the bucket is lifted with the bale in tow. Grab hooks installed on the bucket of a tractor are another tool used to handle round bales, and can be done by a farmer with welding skills by welding two hooks and a heavy chain to the outside top of a tractor front loader bucket.
Long-haul transport
The rounded surface of round bales poses a challenge for long-haul, flat-bed transport, as they could roll off of the flat surface if not properly supported. This is particularly the case with large round bales; their size makes them difficult to flip, so it may not be feasible to flip many of them onto the flat surface for transport and then re-position them on the round surface at the destination. One option that works with both large and small round bales is to equip the flat-bed trailer with guard rails at either end, which prevent bales from rolling either forward or backward. Another solution is the saddle wagon, which has closely spaced rounded saddles or support posts in which round bales sit. The tall sides of each saddle prevent the bales from rolling around while on the wagon, as the bale settles down in between posts. On 3 September 2010, on the A381 in Halwell near Totnes, Devon, England, Mike Edwards an early member of British rock group ELO was killed when his van was crushed by a large round bale. The cellist, 62, died instantly when the bale fell from a tractor on nearby farmland before rolling onto the road and crushing his van.Feeding
A large round bale can be directly used for feeding animals by placing it in a feeding area, tipping it over, removing the bale wrap, and placing a protective ring around the outside so that animals will not walk on hay that has been peeled off the outer perimeter of the bale. The round baler's rotational forming and compaction process also enables both large and small round bales to be fed out by unrolling the bale, leaving a continuous flat strip in the field or behind a feeding barrier.Silage or haylage
, a fermented animal feed, was introduced in the late 1800s, and can also be stored in a silage or haylage bale, which is a high-moisture bale wrapped in plastic film. These are baled much wetter than hay bales, and are usually smaller than hay bales because the greater moisture content makes them heavier and harder to handle. These bales begin to ferment almost immediately, and the metal bale spear stabbed into the core becomes very warm to the touch from the fermentation process.Silage or haylage bales may be wrapped by placing them on a rotating bale spear mounted on the rear of a tractor. As the bale spins, a layer of plastic cling film is applied to the exterior of the bale. This roll of plastic is mounted in a sliding shuttle on a steel arm and can move parallel to the bale axis, so the operator does not need to hold up the heavy roll of plastic. The plastic layer extends over the ends of the bale to form a ring of plastic approximately wide on the ends, with hay exposed in the center.
To stretch the cling-wrap plastic tightly over the bale, the tension is actively adjusted with a knob on the end of the roll, which squeezes the ends of the roll in the shuttle. In the example wrapping video, the operator is attempting to use high tension to get a flat, smooth seal on the right end. However, the tension increases too much and the plastic tears off. The operator recovers by quickly loosening the tension and allows the plastic to feed out halfway around the bale before reapplying the tension to the sheeting.
These bales are placed in a long continuous row, with each wrapped bale pressed firmly against all the other bales in the row before being set down onto the ground. The plastic wrap on the ends of each bale sticks together to seal out air and moisture, protecting the silage from the elements. The end-bales are hand-sealed with strips of cling plastic across the opening.
The airtight seal between each bale permits the row of round bales to ferment as if they were in a silo bag, but they are easier to handle than a silo bag, as they are more robust and compact. The plastic usage is relatively high, and there is no way to reuse the silage-contaminated plastic sheeting, although it can be recycled or used as a fuel source via incineration. The wrapping cost is approximately US$5 per bale.
An alternative form of wrapping uses the same type of bale placed on a bale wrapper, consisting of pair of rollers on a turntable mounted on the three-point linkage of a tractor. It is then spun about two axes while being wrapped in several layers of cling-wrap plastic film. This covers the ends and sides of the bale in one operation, thus sealing it separately from other bales. The bales are then moved or stacked using a special pincer attachment on the front loader of a tractor, which does not damage the film seal. They can also be moved using a standard bale spike, but this punctures the airtight seal, and the hole in the film must be repaired after each move.
Plastic-wrapped bales must be unwrapped before being fed to livestock to prevent accidental ingestion of the plastic. Like round hay bales, silage bales are usually fed using a ring feeder.