Gunshot wound
A gunshot wound is a penetrating injury caused by a projectile shot from a gun. Damage may include bleeding, bone fractures, organ damage, wound infection, and loss of the ability to move part of the body. Damage depends on the part of the body hit, the path the bullet follows through the body, and the type and speed of the bullet. In severe cases, although not uncommon, the injury is fatal. Long-term complications can include bowel obstruction, failure to thrive, neurogenic bladder and paralysis, recurrent cardiorespiratory distress and pneumothorax, hypoxic brain injury leading to early dementia, amputations, chronic pain and pain with light touch, deep venous thrombosis with pulmonary embolus, limb swelling and debility, and lead poisoning.
Factors that determine rates of gun violence vary by country. These factors may include the illegal drug trade, easy access to firearms, substance misuse including alcohol, mental health problems, firearm laws, social attitudes, economic differences, and occupations such as being a police officer. Where guns are more common, altercations more often end in death.
Before management begins, the area must be verified as safe. This is followed by stopping major bleeding, then assessing and supporting the airway, breathing, and circulation. Firearm laws, particularly background checks and permit to purchase, decrease the risk of death from firearms. Safer firearm storage may decrease the risk of firearm-related deaths in children.
In 2015, about a million gunshot wounds occurred from interpersonal violence. In 2016, firearms resulted in 251,000 deaths globally, up from 209,000 in 1990. Of these deaths, 161,000 were the result of assault, 67,500 were the result of suicide, and 23,000 were accidents. In the United States, guns resulted in about 40,000 deaths in 2017. Firearm-related deaths are most common in males between the ages of 20 and 24 years. Economic costs due to gunshot wounds have been estimated at $140 billion a year in the United States.
Signs and symptoms
from a gunshot wound varies widely based on the bullet, velocity, mass, entry point, trajectory, affected anatomy, and exit point. Gunshot wounds can be particularly devastating compared to other penetrating injuries because the trajectory and fragmentation of bullets can be unpredictable after entry. Moreover, gunshot wounds typically involve a large degree of nearby tissue disruption and destruction caused by the physical effects of the projectile correlated with the bullet velocity classification.The immediate damaging effect of a gunshot wound is typically severe bleeding with the potential for a type of shock known as hypovolemic shock, a condition characterized by inadequate delivery of oxygen to vital organs. In the case of traumatic hypovolemic shock, this failure of adequate oxygen delivery is due to blood loss, as blood is the means of delivering oxygen to the body's constituent parts. Besides blood loss, internal bleeding can lead to complications.
Devastating effects can result when a bullet strikes a vital organ such as the heart, lungs, or liver, or damages a component of the central nervous system such as the spinal cord or brain. It can lead to organ failure and death.
Common causes of death following gunshot injury include bleeding, low oxygen caused by pneumothorax, catastrophic injury to the heart and major blood vessels, and damage to the brain or central nervous system. Non-fatal gunshot wounds frequently have mild to severe long-lasting effects, typically some form of major disfigurement such as amputation because of a severe bone fracture and may cause permanent disability. A sudden blood gush may take effect immediately from a gunshot wound if a bullet directly damages larger blood vessels, especially arteries.
Pathophysiology
The degree of tissue disruption caused by a projectile is related to the cavitation the projectile creates as it passes through tissue. A bullet with sufficient energy will have a cavitation effect in addition to the penetrating track injury. As the bullet passes through the tissue, initially crushing then lacerating, the space left forms a cavity; this is called the permanent cavity. Higher-velocity bullets create a pressure wave that forces the tissues away, creating not only a permanent cavity the size of the caliber of the bullet but a temporary cavity or secondary cavity, which is often many times larger than the bullet itself. The temporary cavity is the radial stretching of tissue around the bullet's wound track, which momentarily leaves an empty space caused by high pressures surrounding the projectile that accelerate material away from its path. The extent of cavitation, in turn, is related to the following characteristics of the projectile:- Kinetic energy: KE = 1/2mv2. This helps to explain why wounds produced by projectiles of higher mass and/or higher velocity produce greater tissue disruption than projectiles of lower mass and velocity. The velocity of the bullet is a more important determinant of tissue injury. Although both mass and velocity contribute to the overall energy of the projectile, the energy is proportional to the mass while proportional to the square of its velocity. As a result, for constant velocity, if the mass is doubled, the energy is doubled; however, if the velocity of the bullet is doubled, the energy increases four times. The initial velocity of a bullet is largely dependent on the firearm. The US military commonly uses 5.56-mm bullets, which have a relatively low mass as compared with other bullets; however, the speed of these bullets is relatively fast. As a result, they produce a larger amount of kinetic energy, which is transmitted to the tissues of the target. The size of the temporary cavity is approximately proportional to the kinetic energy of the bullet and depends on the resistance of the tissue to stress. Muzzle energy, which is based on muzzle velocity, is often used for ease of comparison.
- Yaw: Handgun bullets will generally travel in a relatively straight line or make one turn if a bone is hit. Upon travel through deeper tissue, high-energy rounds may become unstable as they decelerate, and may tumble as the energy of the projectile is absorbed, causing stretching and tearing of the surrounding tissue.
- Fragmentation: Most commonly, bullets do not fragment, and secondary damage from fragments of shattered bone is a more common complication than bullet fragments.
Diagnosis
Classification
Gunshot wounds are classified according to the speed of the projectile using the Gustilo open fracture classification:- Low-velocity: Less than 335 m/s
- Medium-velocity: Between 360 m/s and 600 m/s
- High-velocity: Between 600 m/s and 1,000 m/s
Bullets from handguns are sometimes less than but with modern pistol loads, they usually are slightly above, while bullets from most modern rifles exceed. One recently developed class of firearm projectiles is the hyper-velocity bullet, such cartridges are usually made for achieving such high speed, purpose-built in factories or made by amateurs. Examples of hyper velocity cartridges include the.220 Swift,.17 Remington and.17 Mach IV cartridges. The US military commonly uses 5.56mm bullets, which have a relatively low mass as compared with other bullets ; however, the speed of these bullets is relatively fast. As a result, they produce a larger amount of kinetic energy, which is transmitted to the tissues of the target. High energy transfer results in more tissue disruption, which plays a role in incapacitation, but other factors such as wound size and shot placement are also important.
Kronlein shot
The "Kronlein shot" is a distinctive type of headshot wound that can only be created by a high velocity rifle bullet or shotgun slug. In a Kronlein shot, the intact brain is ejected from the skull and deposited some distance from the victim's body. This type of wound is believed to be caused by a hydrodynamic effect. Hydraulic pressure generated within the skull by a high velocity bullet leads to the explosive ejection of the brain from the fractured skull.Prevention
Interventions have been recommended to reduce the risk of firearm related injury or death. Various medical organizations in the United States have recommended criminal background checks be required before a person can purchase a gun, and that those convicted for violent crimes be precluded from purchase. They also support safe-storage laws, as well as better mental health care and removal of guns from those at risk of suicide. Physicians are encouraged to counsel patients regarding safe storage and other injury prevention strategies during routine medical care. Keeping guns locked and unloaded is associated with a lower risk of gun related injury or death for all household members.Temporarily removing guns from the home, either voluntarily or by court order is recommended for those who are at risk of suicide or violence towards others. Such laws have been associated with a lower risk of suicide using guns in population based studies.
Management
Initial assessment for a gunshot wound is approached in the same way as other acute trauma using the advanced trauma life support protocol. These include:- A) Airway - Assess and protect airway and potentially the cervical spine
- B) Breathing - Maintain adequate ventilation and oxygenation
- C) Circulation - Assess for and control bleeding to maintain organ perfusion including focused assessment with sonography for trauma
- D) Disability - Perform basic neurological exam including Glasgow Coma Scale
- E) Exposure - Expose entire body and search for any missed injuries, entry points, and exit points while maintaining body temperature