Group 3 element
Group 3 is the first group of transition metals in the periodic table. This group is closely related to the rare-earth elements. It contains the four elements scandium, yttrium, lutetium, and lawrencium. The group is also called the scandium group or scandium family after its lightest member.
The chemistry of the group 3 elements is typical for early transition metals: they all essentially have only the group oxidation state of +3 as a major one, and like the preceding main-group metals are quite electropositive and have a less rich coordination chemistry. Due to the effects of the lanthanide contraction, yttrium and lutetium are very similar in properties. Yttrium and lutetium have essentially the chemistry of the heavy lanthanides, but scandium shows several differences due to its small size. This is a similar pattern to those of the early transition metal groups, where the lightest element is distinct from the very similar next two.
All the group 3 elements are rather soft, silvery-white metals, although their hardness increases with atomic number. They quickly tarnish in air and react with water, though their reactivity is masked by the formation of an oxide layer. The first three of them occur naturally, and especially yttrium and lutetium are almost invariably associated with the lanthanides due to their similar chemistry. Lawrencium is strongly radioactive: it does not occur naturally and must be produced by artificial synthesis, but its observed and theoretically predicted properties are consistent with it being a heavier homologue of lutetium. None of the group 3 elements have any biological role.
Historically, sometimes lanthanum and actinium were included in the group instead of lutetium and lawrencium, because the electron configurations of many of the rare earths were initially measured wrongly. This version of group 3 is still commonly found in textbooks, but most authors focusing on the subject are against it. Many authors attempt to compromise between the two formats by leaving the spaces below yttrium blank, but this contradicts quantum mechanics as it results in an f-block that is 15 elements wide rather than 14.
Composition
Physical, chemical, and electronic evidence overwhelmingly shows that the correct elements in group 3 are scandium, yttrium, lutetium, and lawrencium: this is the classification adopted by most chemists and physicists who have considered the matter. It was supported by IUPAC in a 1988 report and reaffirmed in 2021. Many textbooks however show group 3 as containing scandium, yttrium, lanthanum, and actinium, a format based on historically wrongly measured electron configurations: Lev Landau and Evgeny Lifshitz already considered it to be "incorrect" in 1948, but the issue was brought to a wide debate only in 1982 by William B. Jensen.The spaces below yttrium are often left blank as a third option, but there is confusion in the literature on whether this format implies that group 3 contains only scandium and yttrium, or if it also contains all the lanthanides and actinides; either way, this format contradicts quantum physics by creating a 15-element-wide f-block when only 14 electrons can fit in an f-subshell. While the 2021 IUPAC report noted that 15-element-wide f-blocks are supported by some practitioners of a specialised branch of relativistic quantum mechanics focusing on the properties of superheavy elements, the project's opinion was that such interest-dependent concerns should not have any bearing on how the periodic table is presented to "the general chemical and scientific community". In fact, relativistic quantum-mechanical calculations of Lu and Lr compounds found no valence f-orbitals in either element. Other authors focusing on superheavy elements since clarified that the "15th entry of the f-block represents the first slot of the d-block which is left vacant to indicate the place of the f-block inserts", which would imply that this form still has Lu and Lr as d-block elements under Sc and Y. Indeed, when IUPAC publications expand the table to 32 columns, they make this clear and place Lu and Lr under Y.
As noted by the 2021 IUPAC report, Sc-Y-Lu-Lr is the only form that simultaneously allows for the preservation of the sequence of atomic number, avoids splitting the d-block into "two highly uneven portions", and gives the blocks the correct widths quantum mechanics demands. While arguments in favour of Sc-Y-La-Ac can still be found in the literature, many authors consider them to be logically inconsistent. For example, it has been argued that lanthanum and actinium cannot be f-block elements because their atoms have not begun to fill the f-subshells. But the same is true of thorium which is never disputed as an f-block element, and this argument overlooks the problem on the other end: that the f-shells complete filling at ytterbium and nobelium, not at lutetium and lawrencium. Lanthanum, actinium, and thorium are simply examples of exceptions to the Madelung rule; not only do those exceptions represent a minority of elements, but they have also never been considered as relevant for positioning any other elements on the periodic table. In gaseous atoms, the d-shells complete their filling at copper, palladium, and gold, but it is universally accepted by chemists that these configurations are exceptional and that the d-block really ends in accordance with the Madelung rule at zinc, cadmium, and mercury. The relevant fact for placement is that lanthanum and actinium have valence f-orbitals that can become occupied in chemical environments, whereas lutetium and lawrencium do not: their f-shells are in the core, and cannot be used for chemical reactions. Thus the relationship between yttrium and lanthanum is only a secondary relationship between elements with the same number of valence electrons but different kinds of valence orbitals, such as that between chromium and uranium; whereas the relationship between yttrium and lutetium is primary, sharing both valence electron count and valence orbital type.
History
The discovery of the group 3 elements is inextricably tied to that of the rare earths, with which they are universally associated in nature. In 1787, Swedish part-time chemist Carl Axel Arrhenius found a heavy black rock near the Swedish village of Ytterby, Sweden. Thinking that it was an unknown mineral containing the newly discovered element tungsten, he named it ytterbite. Finnish scientist Johan Gadolin identified a new oxide or "earth" in Arrhenius' sample in 1789, and published his completed analysis in 1794; in 1797, the new oxide was named yttria. In the decades after French scientist Antoine Lavoisier developed the first modern definition of chemical elements, it was believed that earths could be reduced to their elements, meaning that the discovery of a new earth was equivalent to the discovery of the element within, which in this case would have been yttrium. Until the early 1920s, the chemical symbol "Yt" was used for the element, after which "Y" came into common use. Yttrium metal, albeit impure, was first prepared in 1828 when Friedrich Wöhler heated anhydrous yttrium chloride with potassium to form metallic yttrium and potassium chloride. In fact, Gadolin's yttria proved to be a mixture of many metal oxides, that started the history of the discovery of the rare earths.In 1869, Russian chemist Dmitri Mendeleev published his periodic table, which had an empty space for an element above yttrium. Mendeleev made several predictions on this hypothetical element, which he called eka-boron. By then, Gadolin's yttria had already been split several times; first by Swedish chemist Carl Gustaf Mosander, who in 1843 had split out two more earths which he called terbia and erbia ; and then in 1878 when Swiss chemist Jean Charles Galissard de Marignac split terbia and erbia themselves into more earths. Among these was ytterbia, which Swedish chemist Lars Fredrik Nilson successfully split in 1879 to reveal yet another new element. He named it scandium, from the Latin Scandia meaning "Scandinavia". Nilson was apparently unaware of Mendeleev's prediction, but Per Teodor Cleve recognized the correspondence and notified Mendeleev. Chemical experiments on scandium proved that Mendeleev's suggestions were correct; along with discovery and characterization of gallium and germanium this proved the correctness of the whole periodic table and periodic law. Metallic scandium was produced for the first time in 1937 by electrolysis of a eutectic mixture, at 700–800 °C, of potassium, lithium, and scandium chlorides. Scandium exists in the same ores from which yttrium had been discovered, but is much rarer and probably for that reason had eluded discovery.
The remaining component of Marignac's ytterbia also proved to be a composite. In 1907, French scientist Georges Urbain, Austrian mineralogist Baron Carl Auer von Welsbach, and American chemist Charles James all independently discovered a new element within ytterbia. Welsbach proposed the name cassiopeium for his new element, whereas Urbain chose the name lutecium. The dispute on the priority of the discovery is documented in two articles in which Urbain and von Welsbach accuse each other of publishing results influenced by the published research of the other. In 1909, the Commission on Atomic Mass, which was responsible for the attribution of the names for the new elements, granted priority to Urbain and adopting his names as official ones. An obvious problem with this decision was that Urbain was one of the four members of the commission. In 1949, the spelling of element 71 was changed to lutetium. Later work connected with Urbain's attempts to further split his lutecium however revealed that it had only contained traces of the new element 71, and that it was only von Welsbach's cassiopeium that was pure element 71. For this reason many German scientists continued to use the name cassiopeium for the element until the 1950s. Ironically, Charles James, who had modestly stayed out of the argument as to priority, worked on a much larger scale than the others, and undoubtedly possessed the largest supply of lutetium at the time. Lutetium was the last of the stable rare earths to be discovered. Over a century of research had split the original yttrium of Gadolin into yttrium, scandium, lutetium, and seven other new elements.
Lawrencium is the only element of the group that does not occur naturally. It was probably first synthesized by Albert Ghiorso and his team on February 14, 1961, at the Lawrence Radiation Laboratory at the University of California in Berkeley, California, United States. The first atoms of lawrencium were produced by bombarding a three-milligram target consisting of three isotopes of the element californium with boron-10 and boron-11 nuclei from the Heavy Ion Linear Accelerator. The nuclide was originally reported. The team at the University of California suggested the name lawrencium and the symbol "Lw", for the new element; IUPAC accepted their discovery, but changed the symbol to "Lr". In 1965, nuclear-physics researchers in Dubna, Soviet Union reported, in 1967, they reported that they were not able to confirm American scientists' data on, and proposed the name "rutherfordium" for the new element. The Dubna group criticised the IUPAC approval of the Berkeley group's discovery as having been hasty. In 1971, the Berkeley group did a whole series of experiments aimed at measuring the nuclear decay properties of lawrencium isotopes, in which all previous results from Berkeley and Dubna were confirmed, except that the initial isotope reported at Berkeley in 1961 turned out to have been. In 1992, the IUPAC Trans-fermium Working Group named the nuclear physics teams at Dubna and Berkeley as the co-discoverers of element 103. When IUPAC made the final decision of the naming of the elements beyond 100 in 1997, it decided to keep the name "lawrencium" and symbol "Lr" for element 103 as it had been in use for a long time by that point. The name "rutherfordium" was assigned to the following element 104, which the Berkeley team had proposed it for.