Gravitational lens
A gravitational lens is matter, such as a cluster of galaxies or a point particle, that bends light from a distant source as it travels toward an observer. The amount of gravitational lensing is described by Albert Einstein's general theory of relativity. If light is treated as corpuscles travelling at the speed of light, Newtonian physics also predicts the bending of light, but only half of that predicted by general relativity.
Orest Khvolson and Frantisek Link are generally credited with being the first to discuss the effect in print, but it is more commonly associated with Einstein, who made unpublished calculations on it in 1912 and published an article on the subject in 1936.
In 1937, Fritz Zwicky posited that galaxy clusters could act as gravitational lenses, a claim confirmed in 1979 by observation of the Twin QSO SBS 0957+561.
Description
Unlike an optical lens, a point-like gravitational lens produces a maximum deflection of light that passes closest to its center, and a minimum deflection of light that travels furthest from its center. Consequently, a gravitational lens has no single focal point, but a focal line. The term "lens" in the context of gravitational light deflection was first used by O. J. Lodge, who remarked that it is "not permissible to say that the solar gravitational field acts like a lens, for it has no focal length". If the source, the massive lensing object, and the observer lie in a straight line, the original light source will appear as a ring around the massive lensing object. If there is any misalignment, the observer will see an arc segment instead.This phenomenon was first mentioned in 1924 by the St. Petersburg physicist Orest Khvolson, and quantified by Albert Einstein in 1936. It is usually referred to in the literature as an Einstein ring, since Khvolson did not concern himself with the flux or radius of the ring image. More commonly, where the lensing mass is complex and does not cause a spherical distortion of spacetime, the source will resemble partial arcs scattered around the lens. The observer may then see multiple distorted images of the same source; the number and shape of these depending upon the relative positions of the source, lens, and observer, and the shape of the gravitational well of the lensing object.
There are three classes of gravitational lensing:
; Strong lensing: Where there are easily visible distortions such as the formation of Einstein rings, arcs, and multiple images. Despite being considered "strong", the effect is in general relatively small, such that even a galaxy with a mass more than 100 billion times that of the Sun will produce multiple images separated by only a few arcseconds. Galaxy clusters can produce separations of several arcminutes. In both cases the galaxies and sources are quite distant, many hundreds of megaparsecs away from the Milky Way Galaxy.
; Weak lensing: Where the distortions of background sources are much smaller and can only be detected by analyzing large numbers of sources in a statistical way to find coherent distortions of only a few percent. The lensing shows up statistically as a preferred stretching of the background objects perpendicular to the direction to the centre of the lens. By measuring the shapes and orientations of large numbers of distant galaxies, their orientations can be averaged to measure the shear of the lensing field in any region. This, in turn, can be used to reconstruct the mass distribution in the area: in particular, the background distribution of dark matter can be reconstructed. Since galaxies are intrinsically elliptical and the weak gravitational lensing signal is small, a very large number of galaxies must be used in these surveys. These weak lensing surveys must carefully avoid a number of important sources of systematic error: the intrinsic shape of galaxies, the tendency of a camera's point spread function to distort the shape of a galaxy and the tendency of atmospheric seeing to distort images must be understood and carefully accounted for. The results of these surveys are important for cosmological parameter estimation, to better understand and improve upon the Lambda-CDM model, and to provide a consistency check on other cosmological observations. They may also provide an important future constraint on dark energy.
; Microlensing: Where no distortion in shape can be seen but the amount of light received from a background object changes in time. The lensing object may be stars in the Milky Way in one typical case, with the background source being stars in a remote galaxy, or, in another case, an even more distant quasar. In extreme cases, a star in a distant galaxy can act as a microlens and magnify another star much farther away. The first example of this was the star MACS J1149 Lensed Star 1, thanks to the boost in flux due to the microlensing effect.
Gravitational lenses act equally on all kinds of electromagnetic radiation, not just visible light, and also in non-electromagnetic radiation, like gravitational waves. Weak lensing effects are being studied for the cosmic microwave background as well as galaxy surveys. Strong lenses have been observed in radio and x-ray regimes as well. If a strong lens produces multiple images, there will be a relative time delay between two paths: that is, in one image the lensed object will be observed before the other image.
History
in 1784 and Johann Georg von Soldner in 1801 had pointed out that Newtonian gravity predicts that starlight will bend around a massive object as had already been supposed by Isaac Newton in 1704 in his Queries No.1 in his book Opticks. The same value as Soldner's was calculated by Einstein in 1911 based on the equivalence principle alone. However, Einstein noted in 1915, in the process of completing general relativity, that his 1911-result is only half of the correct value. Einstein became the first to calculate the correct value for light bending.The first observation of light deflection was performed by noting the change in position of stars as they passed near the Sun on the celestial sphere. The observations were performed in 1919 by Arthur Eddington, Frank Watson Dyson, and their collaborators during the total solar eclipse on May 29. The solar eclipse allowed the stars near the Sun to be observed. Observations were made simultaneously in the cities of Sobral, Ceará, Brazil and in São Tomé and Príncipe on the west coast of Africa. The observations demonstrated that the light from stars passing close to the Sun was slightly bent, so that stars appeared slightly out of position.
Image:Gravitational lens-full.jpg|thumb|left|Bending light around a massive object from a distant source. The orange arrows show the apparent position of the background source. The white arrows show the path of the light from the true position of the source.
Image:Einstein cross.jpg|thumb|In the formation known as Einstein's Cross, four images of the same distant quasar appear around a foreground galaxy due to strong gravitational lensing.
The result was considered spectacular news and made the front page of most major newspapers. It made Einstein and his theory of general relativity world-famous. When asked by his assistant what his reaction would have been if general relativity had not been confirmed by Eddington and Dyson in 1919, Einstein said "Then I would feel sorry for the dear Lord. The theory is correct anyway." In 1912, Einstein had speculated that an observer could see multiple images of a single light source, if the light were deflected around a mass. This effect would make the mass act as a kind of gravitational lens. However, as he only considered the effect of deflection around a single star, he seemed to conclude that the phenomenon was unlikely to be observed for the foreseeable future since the necessary alignments between stars and observer would be highly improbable. Several other physicists speculated about gravitational lensing as well, but all reached the same conclusion that it would be nearly impossible to observe.
Although Einstein made unpublished calculations on the subject, the first discussion of the gravitational lens in print was by Khvolson, in a short article discussing the "halo effect" of gravitation when the source, lens, and observer are in near-perfect alignment, now referred to as the Einstein ring.
In 1936, after some urging by Rudi W. Mandl, Einstein reluctantly published the short article "Lens-Like Action of a Star By the Deviation of Light In the Gravitational Field" in the journal Science.
In 1937, Fritz Zwicky first considered the case where the newly discovered galaxies could act as both source and lens, and that, because of the mass and sizes involved, the effect was much more likely to be observed.
In 1963 Yu. G. Klimov, S. Liebes, and Sjur Refsdal recognized independently that quasars are an ideal light source for the gravitational lens effect.
It was not until 1979 that the first gravitational lens would be discovered. It became known as the "Twin QSO" since it initially looked like two identical quasistellar objects. This gravitational lens was discovered by Dennis Walsh, Bob Carswell, and Ray Weymann using the Kitt Peak National Observatory 2.1 meter telescope.
In the 1980s, astronomers realized that the combination of CCD imagers and computers would allow the brightness of millions of stars to be measured each night. In a dense field, such as the galactic center or the Magellanic clouds, many microlensing events per year could potentially be found. This led to efforts such as Optical Gravitational Lensing Experiment, or OGLE, that have characterized hundreds of such events, including those of OGLE-2016-BLG-1190Lb and OGLE-2016-BLG-1195Lb.
Approximate Newtonian description
Newton wondered whether light, in the form of corpuscles, would be bent due to gravity. The Newtonian prediction for light deflection refers to the amount of deflection a corpuscle would feel under the effect of gravity, and therefore one should read "Newtonian" in this context as the referring to the following calculations and not a belief that Newton held in the validity of these calculations.For a gravitational point-mass lens of mass, a corpuscle of mass feels a force
where is the lens-corpuscle separation. If we equate this force with Newton's second law, we can solve for the acceleration that the light undergoes:
The light interacts with the lens from initial time to, and the velocity boost the corpuscle receives is
If one assumes that initially the light is far enough from the lens to neglect gravity, the perpendicular distance between the light's initial trajectory and the lens is b, and the parallel distance is, such that. We additionally assume a constant speed of light along the parallel direction,, and that the light is only being deflected a small amount. After plugging these assumptions into the above equation and further simplifying, one can solve for the velocity boost in the perpendicular direction. The angle of deflection between the corpuscle's initial and final trajectories is therefore
Although this result appears to be half the prediction from general relativity, classical physics predicts that the speed of light is observer-dependent which was superseded by a universal speed of light in special relativity.