Globular cluster
A globular cluster is a spheroidal conglomeration of stars that is bound together by gravity, with a higher concentration of stars towards its center. It can contain anywhere from tens of thousands to many millions of member stars, all orbiting in a stable, compact formation. Globular clusters are similar in form to dwarf spheroidal galaxies, and though globular clusters were long held to be the more luminous of the two, discoveries of outliers had made the distinction between the two less clear by the early 21st century. Their name is derived from Latin globulus. Globular clusters are occasionally known simply as "globulars".
Although one globular cluster, Omega Centauri, was observed in antiquity and long thought to be a star, recognition of the clusters' true nature came with the advent of telescopes in the 17th century. In early telescopic observations, globular clusters appeared as fuzzy blobs, leading French astronomer Charles Messier to include many of them in his catalog of astronomical objects that he thought could be mistaken for comets. Using larger telescopes, 18th-century astronomers recognized that globular clusters are groups of many individual stars. Early in the 20th century the distribution of globular clusters in the sky was some of the first evidence that the Sun is far from the center of the Milky Way.
Globular clusters are found in nearly all galaxies. In spiral galaxies like the Milky Way, they are mostly found in the outer spheroidal part of the galaxythe galactic halo. They are the largest and most massive type of star cluster, tending to be older, denser, and composed of lower abundances of heavy elements than open clusters, which are generally found in the disks of spiral galaxies. The Milky Way has more than 150 known globulars, and there may be many more.
Both the origin of globular clusters and their role in galactic evolution are unclear. Some are among the oldest objects in their galaxies and even the universe, constraining estimates of the universe's age. Globular clusters were formerly thought to consist of stars that all formed at the same time from one star-forming nebula, but nearly all globular clusters contain stars that formed at different times, or that have differing compositions. Some clusters may have had multiple episodes of star formation, and some may be remnants of smaller galaxies captured by larger galaxies.
History of observations
The first known globular cluster, now called M 22, was discovered in 1665 by Abraham Ihle, a German amateur astronomer. The cluster Omega Centauri, easily visible in the southern sky with the naked eye, was known to ancient astronomers like Ptolemy as a star, but was reclassified as a nebula by Edmond Halley in 1677, then finally as a globular cluster in the early 19th century by John Herschel. The French astronomer Abbé Lacaille listed NGC 104,, M 55, M 69, and in his 1751–1752 catalogue. The low resolution of early telescopes prevented individual stars in a cluster from being visually separated until Charles Messier observed M 4 in 1764.| Cluster name | Discovered by | Year |
| M 22 | Abraham Ihle | 1665 |
| ω Cen | Edmond Halley | 1677 |
| M 5 | Gottfried Kirch | 1702 |
| M 13 | Edmond Halley | 1714 |
| M 71 | Philippe Loys de Chéseaux | 1745 |
| M 4 | Philippe Loys de Chéseaux | 1746 |
| M 15 | Jean-Dominique Maraldi | 1746 |
| M 2 | Jean-Dominique Maraldi | 1746 |
When William Herschel began his comprehensive survey of the sky using large telescopes in 1782, there were 34 known globular clusters. Herschel discovered another 36 and was the first to resolve virtually all of them into stars. He coined the term globular cluster in his Catalogue of a Second Thousand New Nebulae and Clusters of Stars. In 1914, Harlow Shapley began a series of studies of globular clusters, published across about forty scientific papers. He examined the clusters' RR Lyrae variables and used their luminosity and period of variability to estimate the distances to the clusters. RR Lyrae variables were later found to be fainter than Cepheid variables, causing Shapley to overestimate the distances.
A large majority of the Milky Way's globular clusters are found in the halo around the galactic core. In 1918, Shapley used this strongly asymmetrical distribution to determine the overall dimensions of the galaxy. Assuming a roughly spherical distribution of globular clusters around the galaxy's center, he used the positions of the clusters to estimate the position of the Sun relative to the Galactic Center. He correctly concluded that the Milky Way's center is in the Sagittarius constellation and not near the Earth. He overestimated the distance, finding typical globular cluster distances of ; the modern distance to the Galactic Center is roughly. Shapley's measurements indicated the Sun is relatively far from the center of the galaxy, contrary to what had been inferred from the observed uniform distribution of ordinary stars. In reality most ordinary stars lie within the galaxy's disk and are thus obscured by gas and dust in the disk, whereas globular clusters lie outside the disk and can be seen at much greater distances.File:A Swarm of Ancient Stars - GPN-2000-000930.jpg|thumb|right|upright=1.4|alt=Thousands of white-ish dots scattered on a black background, strongly concentrated towards the center|The Messier 80 globular cluster in the constellation Scorpius is located about 30,000 light-years from the Sun and contains hundreds of thousands of stars.
The count of known globular clusters in the Milky Way has continued to increase, reaching 83 in 1915, 93 in 1930, 97 by 1947, and 157 in 2010. The number of known globular clusters in the Milky Way reached 158 by the end of 2010, according to the European Southern Observatory, before two new globular clusters were discovered as part of the ESO's VISTA infrared survey, known as Variables in the Vía Láctea survey, bringing the total to 160 known globular clusters. The two discovered by VISTA in 2011 are named VVV CL001 and VVV CL002.
Additional, undiscovered globular clusters are believed to be in the galactic bulge or hidden by the gas and dust of the Milky Way. For example, most of the Palomar Globular Clusters have only been discovered in the 1950s, with some located relatively close-by yet obscured by dust, while others reside in the very far reaches of the Milky Way halo. The Andromeda Galaxy, which is comparable in size to the Milky Way, may have as many as five hundred globulars. Every galaxy of sufficient mass in the Local Group has an associated system of globular clusters, as does almost every large galaxy surveyed. Some giant elliptical galaxies, such as M 87, have as many as 13,000 globular clusters.
Classification
Shapley was later assisted in his studies of clusters by Henrietta Swope and Helen Sawyer Hogg. In 1927–1929, Shapley and Sawyer categorized clusters by the degree of concentration of stars toward each core. Their system, known as the Shapley–Sawyer Concentration Class, identifies the most concentrated clusters as Class I and ranges to the most diffuse Class XII. Astronomers from the Pontifical Catholic University of Chile proposed a new type of globular cluster on the basis of observational data in 2015: Dark globular clusters.Formation
The formation of globular clusters is poorly understood. Globular clusters have traditionally been described as a simple star population formed from a single giant molecular cloud, and thus with roughly uniform age and metallicity. Modern observations show that nearly all globular clusters contain multiple populations; the globular clusters in the Large Magellanic Cloud exhibit a bimodal population, for example. During their youth, these LMC clusters may have encountered giant molecular clouds that triggered a second round of star formation. This star-forming period is relatively brief, compared with the age of many globular clusters. It has been proposed that this multiplicity in stellar populations could have a dynamical origin. In the Antennae Galaxy, for example, the Hubble Space Telescope has observed clusters of clustersregions in the galaxy that span hundreds of parsecs, in which many of the clusters will eventually collide and merge. Their overall range of ages and metallicities could lead to clusters with a bimodal, or even multimodal, distribution of populations.Observations of globular clusters show that their stars primarily come from regions of more efficient star formation, and from where the interstellar medium is at a higher density, as compared to normal star-forming regions. Globular cluster formation is prevalent in starburst regions and in interacting galaxies. Some globular clusters likely formed in dwarf galaxies and were removed by tidal forces to join the Milky Way. In elliptical and lenticular galaxies there is a correlation between the mass of the supermassive black holes at their centers and the extent of their globular cluster systems. The mass of the SMBH in such a galaxy is often close to the combined mass of the galaxy's globular clusters.
No known globular clusters display active star formation, consistent with the hypothesis that globular clusters are typically the oldest objects in their galaxy and were among the first collections of stars to form. Very large regions of star formation known as super star clusters, such as Westerlund 1 in the Milky Way, may be the precursors of globular clusters.
Many of the Milky Way's globular clusters have a retrograde orbit, including the most massive, Omega Centauri. Its retrograde orbit suggests it may be a remnant of a dwarf galaxy captured by the Milky Way.
Composition
Globular clusters are generally composed of hundreds of thousands of low-metal, old stars. The stars found in a globular cluster are similar to those in the bulge of a spiral galaxy but confined to a spheroid in which half the light is emitted within a radius of only a few to a few tens of parsecs. They are free of gas and dust, and it is presumed that all the gas and dust was long ago either turned into stars or blown out of the cluster by the massive first-generation stars.Globular clusters can contain a high density of stars; on average about 0.4stars per cubic parsec, increasing to 100 or 1000stars/pc in the core of the cluster. In comparison, the stellar density around the Sun is roughly 0.1 stars/pc. The typical distance between stars in a globular cluster is about one light year, but at its core the separation between stars averages about a third of a light yearthirteen times closer than the Sun is to its nearest neighbor, Proxima Centauri.
Globular clusters are thought to be unfavorable locations for planetary systems. Planetary orbits are dynamically unstable within the cores of dense clusters because of the gravitational perturbations of passing stars. A planet orbiting at one astronomical unit around a star that is within the core of a dense cluster, such as 47 Tucanae, would survive only on the order of a hundred million years. There is a planetary system orbiting a pulsar that belongs to the globular cluster M4, but these planets likely formed after the event that created the pulsar.
Some globular clusters, like Omega Centauri in the Milky Way and Mayall II in the Andromeda Galaxy, are extraordinarily massive, measuring several million solar masses and having multiple stellar populations. Both are evidence that supermassive globular clusters formed from the cores of dwarf galaxies that have been consumed by larger galaxies. About a quarter of the globular cluster population in the Milky Way may have been accreted this way, as with more than 60% of the globular clusters in the outer halo of Andromeda.