Fertilisation
Fertilisation or fertilization, also known as generative fertilisation, syngamy and impregnation, is the fusion of gametes to give rise to a zygote and initiate its development into a new individual organism or offspring. While processes such as insemination or pollination, which happen before the fusion of gametes, are also sometimes informally referred to as fertilisation, these are technically separate processes. The cycle of fertilisation and development of new individuals is called sexual reproduction. During double fertilisation in angiosperms, the haploid male gamete combines with two haploid polar nuclei to form a triploid primary endosperm nucleus by the process of vegetative fertilisation.
Discovery
In antiquity, Aristotle conceived the formation of new individuals through fusion of male and female fluids, with form and function emerging gradually, in a mode called by him as epigenetic.In 1784, Spallanzani established the need of interaction between the female's ovum and male's sperm to form a zygote in frogs. In 1827, Karl Ernst von Baer observed a therian mammalian egg for the first time. Oscar Hertwig, in Germany, described the fusion of nuclei of spermatozoa and of ova from sea urchin.
Evolution
The evolution of fertilisation is related to the origin of meiosis, as both are part of sexual reproduction, originated in eukaryotes. One hypothesis states that meiosis originated from mitosis.Fertilisation in plants
The gametes that participate in fertilisation of plants are the sperm and the egg cell. Various plant groups have differing methods by which the gametes produced by the male and female gametophytes come together and are fertilised. In bryophytes and pteridophytic land plants, fertilisation of the sperm and egg takes place within the archegonium. In seed plants, the male gametophyte is formed within a pollen grain. After pollination, the pollen grain germinates, and a pollen tube grows and penetrates the ovule through a tiny pore called a micropyle. The sperm are transferred from the pollen through the pollen tube to the ovule where the egg is fertilised. In flowering plants, two sperm cells are released from the pollen tube, and a second fertilisation event occurs involving the second sperm cell and the central cell of the ovule, which is a second female gamete.Pollen tube growth
Unlike animal sperm which is motile, the sperm of most seed plants is immotile and relies on the pollen tube to carry it to the ovule where the sperm is released. The pollen tube penetrates the stigma and elongates through the extracellular matrix of the style before reaching the ovary. Then near the receptacle, it breaks through the ovule through the micropyle and the pollen tube "bursts" into the embryo sac, releasing sperm. The growth of the pollen tube has been believed to depend on chemical cues from the pistil, however these mechanisms were poorly understood until 1995. Work done on tobacco plants revealed a family of glycoproteins called TTS proteins that enhanced growth of pollen tubes. Pollen tubes in a sugar free pollen germination medium and a medium with purified TTS proteins both grew. However, in the TTS medium, the tubes grew at a rate 3x that of the sugar-free medium. TTS proteins were also placed on various locations of semi in vivo pollinated pistils, and pollen tubes were observed to immediately extend toward the proteins. Transgenic plants lacking the ability to produce TTS proteins had slower pollen tube growth and reduced fertility.Rupture of pollen tube
The rupture of the pollen tube to release sperm in Arabidopsis has been shown to depend on a signal from the female gametophyte. Specific proteins called FER protein kinases present in the ovule control the production of highly reactive derivatives of oxygen called reactive oxygen species. ROS levels have been shown via GFP to be at their highest during floral stages when the ovule is the most receptive to pollen tubes, and lowest during times of development and following fertilisation. High amounts of ROS activate Calcium ion channels in the pollen tube, causing these channels to take up Calcium ions in large amounts. This increased uptake of calcium causes the pollen tube to rupture, and release its sperm into the ovule. Pistil feeding assays in which plants were fed diphenyl iodonium chloride suppressed ROS concentrations in Arabidopsis, which in turn prevented pollen tube rupture.Flowering plants
After being fertilised, the ovary starts to swell and develop into the fruit. With multi-seeded fruits, multiple grains of pollen are necessary for syngamy with each ovule. The growth of the pollen tube is controlled by the vegetative cytoplasm. Hydrolytic enzymes are secreted by the pollen tube that digest the female tissue as the tube grows down the stigma and style; the digested tissue is used as a nutrient source for the pollen tube as it grows. During pollen tube growth towards the ovary, the generative nucleus divides to produce two separate sperm nuclei – a growing pollen tube therefore contains three separate nuclei, two sperm and one tube. The sperms are interconnected and dimorphic, the large one, in a number of plants, is also linked to the tube nucleus and the interconnected sperm and the tube nucleus form the "male germ unit".Double fertilisation is the process in angiosperms in which two sperm from each pollen tube fertilise two cells in a female gametophyte that is inside an ovule. After the pollen tube enters the gametophyte, the pollen tube nucleus disintegrates and the two sperm cells are released; one of the two sperm cells fertilises the egg cell, forming a diploid zygote. This is the point when fertilisation actually occurs; pollination and fertilisation are two separate processes. The nucleus of the other sperm cell fuses with two haploid polar nuclei in the centre of the gametophyte. The resulting cell is triploid. This triploid cell divides through mitosis and forms the endosperm, a nutrient-rich tissue, inside the seed. The two central-cell maternal nuclei that contribute to the endosperm arise by mitosis from the single meiotic product that also gave rise to the egg. Therefore, maternal contribution to the genetic constitution of the triploid endosperm is double that of the embryo.
One primitive species of flowering plant, Nuphar polysepala, has endosperm that is diploid, resulting from the fusion of a sperm with one, rather than two, maternal nuclei. It is believed that early in the development of angiosperm lineages, there was a duplication in this mode of reproduction, producing seven-celled/eight-nucleate female gametophytes, and triploid endosperms with a 2:1 maternal to paternal genome ratio.
In many plants, the development of the flesh of the fruit is proportional to the percentage of fertilised ovules. For example, with watermelon, about a thousand grains of pollen must be delivered and spread evenly on the three lobes of the stigma to make a normal sized and shaped fruit.
Self-pollination and outcrossing
, or cross-fertilisation, and self-fertilisation represent different strategies with differing benefits and costs. An estimated 48.7% of plant species are either dioecious or self-incompatible obligate outcrossers. It is also estimated that about 42% of flowering plants exhibit a mixed mating system in nature.In the most common kind of mixed mating system, individual plants produce a single type of flower and fruits may contain self-fertilised, outcrossed or a mixture of progeny types. The transition from cross-fertilisation to self-fertilisation is the most common evolutionary transition in plants, and has occurred repeatedly in many independent lineages. About 10–15% of flowering plants are predominantly self-fertilising.
Under circumstances where pollinators or mates are rare, self-fertilisation offers the advantage of reproductive assurance. Self-fertilisation can therefore result in improved colonisation ability. In some species, self-fertilisation has persisted over many generations. Capsella rubella is a self-fertilising species that became self-compatible 50,000 to 100,000 years ago. Arabidopsis thaliana is a predominantly self-fertilising plant with an out-crossing rate in the wild of less than 0.3%; a study suggested that self-fertilisation evolved roughly a million years ago or more in A. thaliana. In long-established self-fertilising plants, the masking of deleterious mutations and the production of genetic variability is infrequent and thus unlikely to provide a sufficient benefit over many generations to maintain the meiotic apparatus. Consequently, one might expect self-fertilisation to be replaced in nature by an ameiotic asexual form of reproduction that would be less costly. However the actual persistence of meiosis and self-fertilisation as a form of reproduction in long-established self-fertilising plants may be related to the immediate benefit of efficient recombinational repair of DNA damage during formation of germ cells provided by meiosis at each generation.
Fertilisation in animals
The mechanics behind fertilisation has been studied extensively in sea urchins and mice. This research addresses the question of how the sperm and the appropriate egg find each other and the question of how only one sperm gets into the egg and delivers its contents. There are three steps to fertilisation that ensure species-specificity:- Chemotaxis
- Sperm activation/acrosomal reaction
- Sperm/egg adhesion
Internal vs. external
Oviparous animals producing eggs with thin tertiary membranes or no membranes at all, on the other hand, use external fertilisation methods. Such animals may be more precisely termed ovuliparous. External fertilisation is advantageous in that it minimises contact, and greater genetic variation.