Geochemistry
Geochemistry is the science that uses the tools and principles of chemistry to explain the mechanisms behind major geological systems such as the Earth's crust and its oceans. The realm of geochemistry extends beyond the Earth, encompassing the entire Solar System, and has made important contributions to the understanding of a number of processes including mantle convection, the formation of planets and the origins of granite and basalt. It is an integrated field of chemistry and geology.
File:Thomas Bresson - Creation-goutte-eau-redim.jpg|thumb|center|1100px|alt=Time-lapse sequence showing a water droplet forming at the tip of a stalactite.|Time‑lapse sequence showing a water droplet forming at the tip of a stalactite in a cave. As mineral‑rich water reaches the cave air, carbon dioxide escapes and the solution moves closer to calcium carbonate saturation. Each droplet deposits a microscopic layer of calcite before falling, making this dripping cycle an important low‑temperature process studied in geochemistry.
History
The term geochemistry was first used by the Swiss-German chemist Christian Friedrich Schönbein in 1838: "a comparative geochemistry ought to be launched, before geognosy can become geology, and before the mystery of the genesis of our planets and their inorganic matter may be revealed." However, for the rest of the century the more common term was "chemical geology", and there was little contact between geologists and chemists.Geochemistry emerged as a separate discipline after major laboratories were established, starting with the United States Geological Survey in 1884, which began systematic surveys of the chemistry of rocks and minerals. The chief USGS chemist, Frank Wigglesworth Clarke, noted that the elements generally decrease in abundance as their atomic weights increase, and summarized the work on elemental abundance in The Data of Geochemistry.
The composition of meteorites was investigated and compared to terrestrial rocks as early as 1850. In 1901, Oliver C. Farrington hypothesised that, although there were differences, the relative abundances should still be the same. This was the beginnings of the field of cosmochemistry and has contributed much of what we know about the formation of the Earth and the Solar System.
In the early 20th century, Max von Laue and William L. Bragg showed that X-ray scattering could be used to determine the structures of crystals. In the 1920s and 1930s, Victor Goldschmidt and associates at the University of Oslo applied these methods to many common minerals and formulated a set of rules for how elements are grouped. Goldschmidt published this work in the series Geochemische Verteilungsgesetze der Elemente .
The research of Manfred Schidlowski from the 1960s to around the year 2002 was concerned with the biochemistry of the Early Earth with a focus on isotope-biogeochemistry and the evidence of the earliest life processes in Precambrian.
Subfields
Some subfields of geochemistry are:- Aqueous geochemistry studies the role of various elements in watersheds, including copper, sulfur, mercury, and how elemental fluxes are exchanged through atmospheric-terrestrial-aquatic interactions.
- Biogeochemistry is the field of study focusing on the effect of life on the chemistry of the Earth.
- Cosmochemistry includes the analysis of the distribution of elements and their isotopes in the cosmos.
- Isotope geochemistry involves the determination of the relative and absolute concentrations of the elements and their isotopes in the Earth and on Earth's surface.
- Organic geochemistry, the study of the role of processes and compounds that are derived from living or once-living organisms.
- Photogeochemistry is the study of light-induced chemical reactions that occur or may occur among natural components of the Earth's surface.
- Regional geochemistry includes applications to environmental, hydrological and mineral exploration studies.
Chemical elements
The chemical behavior of an atom – its affinity for other elements and the type of bonds it forms – is determined by the arrangement of electrons in orbitals, particularly the outermost electrons. These arrangements are reflected in the position of elements in the periodic table. Based on position, the elements fall into the broad groups of alkali metals, alkaline earth metals, transition metals, semi-metals, halogens, noble gases, lanthanides and actinides.
Another useful classification scheme for geochemistry is the Goldschmidt classification, which places the elements into four main groups. Lithophiles combine easily with oxygen. These elements, which include Na, K, Si, Al, Ti, Mg and Ca, dominate in the Earth's crust, forming silicates and other oxides. Siderophile elements have an affinity for iron and tend to concentrate in the core. Chalcophile elements form sulfides; and atmophile elements dominate the atmosphere. Within each group, some elements are refractory, remaining stable at high temperatures, while others are volatile, evaporating more easily, so heating can separate them.
Differentiation and mixing
The chemical composition of the Earth and other bodies is determined by two opposing processes: differentiation and mixing. In the Earth's mantle, differentiation occurs at mid-ocean ridges through partial melting, with more refractory materials remaining at the base of the lithosphere while the remainder rises to form basalt. After an oceanic plate descends into the mantle, convection eventually mixes the two parts together. Erosion differentiates granite, separating it into clay on the ocean floor, sandstone on the edge of the continent, and dissolved minerals in ocean waters. Metamorphism and anatexis can mix these elements together again. In the ocean, biological organisms can cause chemical differentiation, while dissolution of the organisms and their wastes can mix the materials again.Fractionation
A major source of differentiation is fractionation, an unequal distribution of elements and isotopes. This can be the result of chemical reactions, phase changes, kinetic effects, or radioactivity.On the largest scale, planetary differentiation is a physical and chemical separation of a planet into chemically distinct regions. For example, the terrestrial planets formed iron-rich cores and silicate-rich mantles and crusts. In the Earth's mantle, the primary source of chemical differentiation is partial melting, particularly near mid-ocean ridges. This can occur when the solid is heterogeneous or a solid solution, and part of the melt is separated from the solid. The process is known as equilibrium or batch melting if the solid and melt remain in equilibrium until the moment that the melt is removed, and fractional or Rayleigh melting if it is removed continuously.
Isotopic fractionation can have mass-dependent and mass-independent forms. Molecules with heavier isotopes have lower ground state energies and are therefore more stable. As a result, chemical reactions show a small isotope dependence, with heavier isotopes preferring species or compounds with a higher oxidation state; and in phase changes, heavier isotopes tend to concentrate in the heavier phases. Mass-dependent fractionation is largest in light elements because the difference in masses is a larger fraction of the total mass.
Ratios between isotopes are generally compared to a standard. For example, sulfur has four stable isotopes, of which the two most common are 32S and 34S. The ratio of their concentrations,, is reported as
where is the same ratio for a standard. Because the differences are small, the ratio is multiplied by 1000 to make it parts per thousand. This is represented by the symbol.
Equilibrium
Equilibrium fractionation occurs between chemicals or phases that are in equilibrium with each other. In equilibrium fractionation between phases, heavier phases prefer the heavier isotopes. For two phases A and B, the effect can be represented by the factorIn the liquid-vapor phase transition for water, at 20 degrees Celsius is 1.0098 for 18O and 1.084 for 2H. In general, fractionation is greater at lower temperatures. At 0 °C, the factors are 1.0117 and 1.111.
Kinetic
When there is no equilibrium between phases or chemical compounds, kinetic fractionation can occur. For example, at interfaces between liquid water and air, the forward reaction is enhanced if the humidity of the air is less than 100% or the water vapor is moved by a wind. Kinetic fractionation generally is enhanced compared to equilibrium fractionation and depends on factors such as reaction rate, reaction pathway and bond energy. Since lighter isotopes generally have weaker bonds, they tend to react faster and enrich the reaction products.Biological fractionation is a form of kinetic fractionation since reactions tend to be in one direction. Biological organisms prefer lighter isotopes because there is a lower energy cost in breaking energy bonds. In addition to the previously mentioned factors, the environment and species of the organism can have a large effect on the fractionation.