Gene-centered view of evolution
The gene-centered view of evolution, gene's eye view, gene selection theory, or selfish gene theory holds that adaptive evolution occurs through the differential survival of competing genes, increasing the allele frequency of those alleles whose phenotypic trait effects successfully promote their own propagation. The proponents of this viewpoint argue that, since heritable information is passed from generation to generation almost exclusively by DNA, natural selection and evolution are best considered from the perspective of genes.
Proponents of the gene-centered viewpoint argue that it permits understanding of diverse phenomena such as altruism and intragenomic conflict that are otherwise difficult to explain from an organism-centered viewpoint. Some proponents claim that the gene-centered view is the aspect of evolutionary theory that is the most empirically validated, has the greatest predictive power, and has the broadest applicability.
The gene-centered view of evolution is a synthesis of the theory of evolution by natural selection, the particulate inheritance theory, and the rejection of transmission of acquired characters. It states that those alleles whose phenotypic effects successfully promote their own propagation will be favorably selected relative to their competitor alleles within the population. This process produces adaptations for the benefit of alleles that promote the reproductive success of the organism, or of other organisms containing the same allele, or even its own propagation relative to the other genes within the same organism.
Opponents of the gene-centered view argue that it is too narrowly focused on adaptation as the only important mechanism of evolution. Thus, it ignores the possibility that traits might be neutral and fixed by random genetic drift. It also ignores the possibility that some fixed traits might even be deleterious. Critics argue that proponents of the gene-centered view often favor an adaptationist perspective that assumes a role for natural selection as the null hypothesis.
Overview
The gene-centered view of evolution is a model for the evolution of social characteristics such as selfishness and altruism, with gene defined as "not just one single physical bit of DNA all replicas of a particular bit of DNA distributed throughout the world".Acquired characteristics
The formulation of the central dogma of molecular biology was summarized by Maynard Smith:The rejection of the inheritance of acquired characters, combined with Ronald Fisher the statistician, giving the subject a mathematical footing, and showing how Mendelian genetics was compatible with natural selection in his 1930 book The Genetical Theory of Natural Selection. J. B. S. Haldane, and Sewall Wright, paved the way to the formulation of the selfish-gene theory. For cases where environment can influence heredity, see epigenetics.
The gene as the unit of selection
The view of the gene as the unit of selection was developed mainly in the works of Richard Dawkins, W. D. Hamilton, Colin Pittendrigh and George C. Williams. It was popularized by Dawkins in his book The Selfish Gene.According to Williams' 1966 book Adaptation and Natural Selection,
Williams argued that "he natural selection of phenotypes cannot in itself produce cumulative change, because phenotypes are extremely temporary manifestations." Each phenotype is the unique product of the interaction between genome and environment. It does not matter how fit and fertile a phenotype is, it will eventually be destroyed and will never be duplicated.
Since 1954, it has been known that DNA is the main physical substrate to genetic information, and it is capable of high-fidelity replication through many generations. So, a particular gene coded in a nucleobase sequence of a lineage of replicated DNA molecules can have a high permanence and a low rate of endogenous change.
In normal sexual reproduction, an entire genome is the unique combination of father's and mother's chromosomes produced at the moment of fertilization. It is generally destroyed with its organism, because "meiosis and recombination destroy genotypes as surely as death." Only half of it is transmitted to each descendant due to independent segregation.
And the high prevalence of horizontal gene transfer in bacteria and archaea means that genomic combinations of these asexually reproducing groups are also transient in evolutionary time: "The traditional view, that prokaryotic evolution can be understood primarily in terms of clonal divergence and periodic selection, must be augmented to embrace gene exchange as a creative force."
The gene as an informational entity persists for an evolutionarily significant span of time through a lineage of many physical copies.
In his book River out of Eden, Dawkins coins the phrase God's utility function to explain his view on genes as units of selection. He uses this phrase as a synonym of the "meaning of life" or the "purpose of life". By rephrasing the word purpose in terms of what economists call a utility function, meaning "that which is maximized", Dawkins attempts to reverse-engineer the purpose in the mind of the Divine Engineer of Nature, or the utility function of god. Finally, Dawkins argues that it is a mistake to assume that an ecosystem or a species as a whole exists for a purpose. He writes that it is incorrect to suppose that individual organisms lead a meaningful life either; in nature, only genes have a utility function – to perpetuate their own existence with indifference to great sufferings inflicted upon the organisms they build, exploit and discard.
Organisms as vehicles
Genes are usually packed together inside a genome, which is itself contained inside an organism. Genes group together into genomes because "genetic replication makes use of energy and substrates that are supplied by the metabolic economy in much greater quantities than would be possible without a genetic division of labour." They build vehicles to promote their mutual interests of jumping into the next generation of vehicles. As Dawkins puts it, organisms are the "survival machines" of genes.The phenotypic effect of a particular gene is contingent on its environment, including the fellow genes constituting with it the total genome. A gene never has a fixed effect, so how is it possible to speak of a gene for long legs? It is because of the phenotypic differences between alleles. One may say that one allele, all other things being equal or varying within certain limits, causes greater legs than its alternative. This difference enables the scrutiny of natural selection.
"A gene can have multiple phenotypic effects, each of which may be of positive, negative or neutral value. It is the net selective value of a gene's phenotypic effect that determines the fate of the gene." For instance, a gene can cause its bearer to have greater reproductive success at a young age, but also cause a greater likelihood of death at a later age. If the benefit outweighs the harm, averaged out over the individuals and environments in which the gene happens to occur, then phenotypes containing the gene will generally be positively selected and thus the abundance of that gene in the population will increase.
Even so, it becomes necessary to model the genes in combination with their vehicle as well as in combination with the vehicle's environment.
Selfish-gene theory
The selfish-gene theory of natural selection can be restated as follows:The result is that "the prevalent genes in a sexual population must be those that, as a mean condition, through a large number of genotypes in a large number of situations, have had the most favourable phenotypic effects for their own replication." In other words, we expect selfish genes. This theory implies that adaptations are the phenotypic effects of genes to maximize their representation in future generations. An adaptation is maintained by selection if it promotes genetic survival directly, or else some subordinate goal that ultimately contributes to successful reproduction.
Individual altruism and genetic egoism
The gene is a unit of hereditary information that exists in many physical copies in the world, and which particular physical copy will be replicated and originate new copies does not matter from the gene's point of view. A selfish gene could be favored by selection by producing altruism among organisms containing it. The idea is summarized as follows:A gene in a somatic cell of an individual may forgo replication to promote the transmission of its copies in the germ line cells. It ensures the high value of p = 1 due to their constant contact and their common origin from the zygote.
The kin selection theory predicts that a gene may promote the recognition of kinship by historical continuity: a mammalian mother learns to identify her own offspring in the act of giving birth; a male preferentially directs resources to the offspring of mothers with whom he has copulated; the other chicks in a nest are siblings; and so on. The expected altruism between kin is calibrated by the value of p, also known as the coefficient of relatedness. For instance, an individual has a p = 1/2 in relation to his brother, and p = 1/8 to his cousin, so we would expect, ceteris paribus, greater altruism among brothers than among cousins. In this vein, geneticist J. B. S. Haldane famously joked, "Would I lay down my life to save my brother? No, but I would to save two brothers or eight cousins." However, examining the human propensity for altruism, kin selection theory seems incapable of explaining cross-familiar, cross-racial and even cross-species acts of kindness, to which Richard Dawkins wrote: