Flood management


Flood management or flood control are methods used to reduce or prevent the detrimental effects of flood waters. Flooding can be caused by a mix of both natural processes, such as extreme weather upstream, and human changes to waterbodies and runoff. Flood management methods can be either of the structural type and of the non-structural type. Structural methods hold back floodwaters physically, while non-structural methods do not. Building hard infrastructure to prevent flooding, such as flood walls, is effective at managing flooding. However, it is best practice within landscape engineering to rely more on soft infrastructure and natural systems, such as marshes and flood plains, for handling the increase in water.
Flood management can include flood risk management, which focuses on measures to reduce risk, vulnerability and exposure to flood disasters and providing risk analysis through, for example, flood risk assessment. Flood mitigation is a related but separate concept describing a broader set of strategies taken to reduce flood risk and potential impact while improving resilience against flood events.
As climate change has led to increased flood risk an intensity, flood management is an important part of climate change adaptation and climate resilience. For example, to prevent or manage coastal flooding, coastal management practices have to handle natural processes like tides but also sea level rise due to climate change. The prevention and mitigation of flooding can be studied on three levels: on individual properties, small communities, and whole towns or cities.

Terminology

Flood management is a broad term that includes measures to control or mitigate flood waters, such as actions to prevent floods from occurring or to minimize their impacts when they do occur.
Flood management methods can be structural or non-structural:
  • Structural flood management is the reduction of the effects of a flood using physical solutions, such as reservoirs, levees, dredging and diversions.
  • Non-structural flood management includes land-use planning, advanced warning systems and flood insurance. Further examples are: "zoning ordinances and codes, flood forecasting, flood proofing, evacuation and channel clearing, flood fight activities, and upstream land treatment or management to control flood damages without physically restraining flood waters".
There are several related terms that are closely connected or encompassed by flood management.
Flood management can include flood risk management, which focuses on measures to reduce risk, vulnerability and exposure to flood disasters and providing risk analysis through, for example, flood risk assessment. In the context of natural hazards and disasters, risk management involves "plans, actions, strategies or policies to reduce the likelihood and/or magnitude of adverse potential consequences, based on assessed or perceived risks".
Flood control, flood protection, flood defence and flood alleviation are all terms that mean "the detention and/or diversion of water during flood events for the purpose of reducing discharge or downstream inundation". Flood control is part of environmental engineering. It involves the management of water movement, such as redirecting flood run-off through the use of floodwalls and flood gates to prevent floodwaters from reaching a particular area.
Flood mitigation is a related but separate concept describing a broader set of strategies taken to reduce flood risk and potential impact while improving resilience against flood events. These methods include prevention, prediction, proofing, physical control and insurance.
Flood relief methods are used to reduce the effects of flood waters or high water levels during a flooding event. They include evacuation plans and rescue operations. Flood relief is part of the response and recovery phase in a flood management plan.

Causes of flooding

Precipitation, absorption, and runoff

Flood levels: blunting the peak

Water levels during a flood tend to rise, then fall, very abruptly. The peak flood level occurs as a very steep, short spike; a quick spurt of water. Anything that slows the surface runoff will slow some of the flow more than other parts, spreading the flow over time and blunting the spike. Even slightly blunting the spike significantly decreases the peak flood level. Generally, the higher the peak flood level, the more flood damage is done. Modern flood control seeks to "slow the flow", and deliberately flood some low-lying areas, ideally vegetated, to act as sponges, letting them drain again as the floodwaters go down.

Purposes

Where floods interact with housing, industry and farming that flood management is indicated and in such cases environmentally helpful solutions may provide solutions. Natural flooding has many beneficial environmental effects. This kind of flooding is usually a seasonal occurrence where floods help replenish soil fertility, restore wetlands and promote biodiversity.

Reducing the impacts of floods

Flooding has many impacts. It damages property and endangers the lives of humans and other species. Rapid water runoff causes soil erosion and concomitant sediment deposition elsewhere. The spawning grounds for fish and other wildlife habitats can become polluted or completely destroyed. Some prolonged high floods can delay traffic in areas which lack elevated roadways. Floods can interfere with drainage and economical use of lands, such as interfering with farming. Structural damage can occur in bridge abutments, bank lines, sewer lines, and other structures within floodways. Waterway navigation and hydroelectric power are often impaired. Financial losses due to floods are typically millions of dollars each year, with the worst floods in recent U.S. history having cost billions of dollars.

Protection of individual properties

Property owners may fit their homes to stop water entering by blocking doors and air vents, waterproofing important areas and sandbagging the edges of the building. Private precautionary measures are increasingly important in flood risk management.
Flood mitigation at the property level may also involve preventative measures focused on the building site, including scour protection for shoreline developments, improving rainwater in filtration through the use of permeable paving materials and grading away from structures, and inclusion of berms, wetlands or swales in the landscape.

Protection of communities

When more homes, shops and infrastructure are threatened by the effects of flooding, then the benefits of protection are worth the additional cost. Temporary flood defenses can be constructed in certain locations which are prone to floods and provide protection from rising flood waters. Rivers running through large urban developments are often controlled and channeled. Water rising above a canal's full capacity may cause flooding to spread to other waterways and areas of the community, which causes damage. Defenses can be constructed to minimize damage, which involves raising the edge of the water with levees, embankments or walls. The high population and value of infrastructure at risk often justifies the high cost of mitigation in larger urban areas.

Protection of wider areas such as towns or cities

The most effective way of reducing the risk to people and property is through the production of flood risk maps. Most countries have produced maps which show areas prone to flooding based on flood data. In the UK, the Environment Agency has produced maps which show areas at risk. The map to the right shows a flood map for the City of York, including the floodplain for a 1 in 100-year flood, the predicted floodplain for a 1 in 1000 year flood and low-lying areas in need of flood defence. The most sustainable way of reducing risk is to prevent further development in flood-prone areas and old waterways. It is important for at-risk communities to develop a comprehensive Floodplain Management plan.
In the US, communities that participate in the National Flood Insurance Program must agree to regulate development in flood-prone areas.

Strategic retreat

One way of reducing the damage caused by flooding is to remove buildings from flood-prone areas, leaving them as parks or returning them to wilderness. Floodplain buyout programs have been operated in places like New Jersey, Charlotte, North Carolina, and Missouri.
In the United States, FEMA produces flood insurance rate maps that identify areas of future risk, enabling local governments to apply zoning regulations to prevent or minimize property damage.

Resilience

Buildings and other urban infrastructure can be designed so that even if a flood does happen, the city can recover quickly and costs are minimized. For example, homes can be put on stilts or build on an elevated level. Electrical and HVAC equipment can be put on the roof instead of in the basement, and subway entrances and tunnels can have built-in movable water barriers. New York City began a substantial effort to plan and build for flood resilience after Hurricane Sandy. Flood resilience technologies support the fast recovery of individuals and communities affected, but their use remains limited.

Climate change adaptation

Structural methods

Some methods of flood control have been practiced since ancient times. These methods include planting vegetation to retain extra water, terracing hillsides to slow flow downhill, and the construction of floodways. Other techniques include the construction of levees, lakes, dams, reservoirs, retention ponds to hold extra water during times of flooding.

Dams

Many dams and their associated reservoirs are designed completely or partially to aid in flood protection and control. Many large dams have flood-control reservations in which the level of a reservoir must be kept below a certain elevation before the onset of the rainy/summer melt season to allow a certain amount of space in which floodwaters can fill. Other beneficial uses of dam created reservoirs include hydroelectric power generation, water conservation, and recreation. Reservoir and dam construction and design is based upon standards, typically set out by the government. In the United States, dam and reservoir design is regulated by the US Army Corps of Engineers. Design of a dam and reservoir follows guidelines set by the USACE and covers topics such as design flow rates in consideration to meteorological, topographic, streamflow, and soil data for the watershed above the structure.
The term dry dam refers to a dam that serves purely for flood control without any conservation storage.