Eureka effect
The eureka effect refers to the common human experience of suddenly understanding a previously incomprehensible problem or concept. Some research describes the Aha! effect as a memory advantage, but conflicting results exist as to where exactly it occurs in the brain, and it is difficult to predict under what circumstances one can predict an Aha! moment.
Insight is a psychological term that attempts to describe the process in problem solving when a previously unsolvable puzzle becomes suddenly clear and obvious. Often this transition from not understanding to spontaneous comprehension is accompanied by an exclamation of joy or satisfaction, an Aha! moment.
A person utilizing insight to solve a problem is able to give accurate, discrete, all-or-nothing type responses, whereas individuals not using the insight process are more likely to produce partial, incomplete responses.
A recent theoretical account of the Aha! moment started with four defining attributes of this experience. First, the Aha! moment appears suddenly; second, the solution to a problem can be processed smoothly, or fluently; third, the Aha! moment elicits positive effect; fourth, a person experiencing the Aha! moment is convinced that a solution is true. These four attributes are not separate but can be combined because the experience of processing fluency, especially when it occurs surprisingly, elicits both positive affect and judged truth.
Insight can be conceptualized as a two phase process. The first phase of an Aha! experience requires the problem solver to come upon an impasse, where they become stuck and even though they may seemingly have explored all the possibilities, are still unable to retrieve or generate a solution. The second phase occurs suddenly and unexpectedly. After a break in mental fixation or re-evaluating the problem, the answer is retrieved. Some research suggest that insight problems are difficult to solve because of our mental fixation on the inappropriate aspects of the problem content. In order to solve insight problems, one must "think outside the box". It is this elaborate rehearsal that may cause people to have better memory for Aha! moments. Insight is believed to occur with a break in mental fixation, allowing the solution to appear transparent and obvious.
History and etymology
The effect is named from a story about ancient Greek polymath Archimedes. In the story, Archimedes was asked by the local king to determine whether a crown was pure gold. During a subsequent trip to a public bath, Archimedes noted that water was displaced when his body sank into the bath, and particularly that the volume of water displaced equaled the volume of his body immersed in the water. Having discovered how to measure the volume of an irregular object, and conceiving of a method to solve the king's problem, Archimedes allegedly leaped out and ran home naked, shouting εὕρηκα. This story is now thought to be fictional, because it was first mentioned by the Roman writer Vitruvius nearly 200 years after the date of the alleged event, and because the method described by Vitruvius would not have worked. However, Archimedes certainly did important, original work in hydrostatics, notably in his On Floating Bodies.Research
Initial research
Research on the Aha! moment dates back more than 100 years, to the Gestalt psychologists' first experiments on chimpanzee cognition. In his 1921 book, Wolfgang Köhler described the first instance of insightful thinking in animals: One of his chimpanzees, Sultan, was presented with the task of reaching a banana that had been strung up high on the ceiling so that it was impossible to reach by jumping. After several failed attempts to reach the banana, Sultan sulked in the corner for a while, then suddenly jumped up and stacked a few boxes upon each other, climbed them and thus was able to grab the banana. This observation was interpreted as insightful thinking. Köhler's work was continued by Karl Duncker and Max Wertheimer.The Eureka effect was later also described by Pamela Auble, Jeffrey Franks and Salvatore Soraci in 1979. The subject would be presented with an initially confusing sentence such as "The haystack was important because the cloth ripped". After a certain period of time of non-comprehension by the reader, the cue word would be presented, the reader could comprehend the sentence, and this resulted in better recall on memory tests. Subjects spend a considerable amount of time attempting to solve the problem, and initially it was hypothesized that elaboration towards comprehension may play a role in increased recall. There was no evidence that elaboration had any effect for recall. It was found that both "easy" and "hard" sentences that resulted in an Aha! effect had significantly better recall rates than sentences that subjects were able to comprehend immediately. In fact equal recall rates were obtained for both "easy" and "hard" sentences which were initially noncomprehensible. It seems to be this noncomprehension to comprehension which results in better recall. The essence of the aha feeling underlining insight problem solving was systemically investigated by Danek et al. and Shen and his colleagues. Recently an attempt has been made in trying to understand the neurobiological basis of Eureka moment.
How people solve insight problems
Currently there are two theories for how people arrive at the solution for insight problems. The first is the progress monitoring theory. The person will analyze the distance from their current state to the goal state. Once a person realizes that they cannot solve the problem while on their current path, they will seek alternative solutions. In insight problems this usually occurs late in the puzzle. The second way that people attempt to solve these puzzles is the representational change theory. The problem solver initially has a low probability for success because they use inappropriate knowledge as they set unnecessary constraints on the problem. Once the person relaxes his or her constraints, they can bring previously unavailable knowledge into working memory to solve the problem. The person also utilizes chunk decomposition, where he or she will separate meaningful chunks into their component pieces. Both constraint relaxation and chunk decomposition allow for a change in representation, that is, a change in the distribution of activation across working memory, at which point they may exclaim, "Aha!" Currently both theories have support, with the progress monitoring theory being more suited to multiple step problems, and the representational change theory more suited to single step problems.The Eureka effect on memory occurs only when there is an initial confusion. When subjects were presented with a clue word before the confusing sentence was presented, there was no effect on recall. If the clue was provided after the sentence was presented, an increase in recall occurred.