Fiber-optic communication


Fiber-optic communication is a form of optical communication for transmitting information from one place to another by sending pulses of infrared or visible light through an optical fiber. The light is a form of carrier wave that is modulated to carry information. Fiber is [|preferred over electrical cabling] when high bandwidth, long distance, or immunity to electromagnetic interference is required. This type of communication can transmit voice, video, and telemetry through local area networks or across long distances.
Optical fiber is used by many telecommunications companies to transmit telephone signals, internet communication, and cable television signals. Researchers at Bell Labs have reached a record [|bandwidth–distance product] of over kilometers per second using fiber-optic communication.

Background

First developed in the 1970s, fiber-optics have revolutionized the telecommunications industry and have played a major role in the advent of the Information Age. Because of its [|advantages over electrical transmission], optical fibers have largely replaced copper wire communications in backbone networks in the developed world.
The process of communicating using fiber optics involves the following basic steps:
  1. creating the optical signal involving the use of a transmitter, usually from an electrical signal
  2. relaying the signal along the fiber, ensuring that the signal does not become too distorted or weak
  3. receiving the optical signal
  4. converting it into an electrical signal

    Applications

is used by telecommunications companies to transmit telephone signals, Internet communication and cable television signals. It is also used in other industries, including medical, defense, government, industrial and commercial. In addition to serving the purposes of telecommunications, it is used as light guides, for imaging tools, lasers, hydrophones for seismic waves, SONAR, and as sensors to measure pressure and temperature.
Due to lower attenuation and interference, optical fiber has advantages over copper wire in long-distance, high-bandwidth applications. However, infrastructure development within cities is relatively difficult and time-consuming, and fiber-optic systems can be complex and expensive to install and operate. Due to these difficulties, early fiber-optic communication systems were primarily installed in long-distance applications, where they can be used to their full transmission capacity, offsetting the increased cost. The prices of fiber-optic communications have dropped considerably since 2000.
The price for rolling out fiber to homes has currently become more cost-effective than that of rolling out a copper-based network. Prices have dropped to $850 per subscriber in the US and lower in countries like the Netherlands, where digging costs are low and housing density is high.
Since 1990, when optical-amplification systems became commercially available, the telecommunications industry has laid a vast network of intercity and transoceanic fiber communication lines. By 2002, an intercontinental network of 250,000 km of submarine communications cable with a capacity of 2.56 Tb/s was completed, and although specific network capacities are privileged information, telecommunications investment reports indicate that network capacity has increased dramatically since 2004. As of 2020, over 5 billion kilometers of fiber-optic cable have been deployed around the globe.

History

In 1880, Alexander Graham Bell and his assistant Charles Sumner Tainter created a very early precursor to fiber-optic communications, the Photophone, at Bell's newly established Volta Laboratory in Washington, D.C.. Bell considered it his most important invention. The device allowed for the transmission of sound on a beam of light. On June 3, 1880, Bell conducted the world's first wireless telephone transmission between two buildings, some 213 meters apart. Due to its use of an atmospheric transmission medium, the Photophone would not prove practical until advances in laser and optical fiber technologies permitted the secure transport of light. The Photophone's first practical use came in military communication systems many decades later.
In 1954, Harold Hopkins and Narinder Singh Kapany showed that rolled fiber glass allowed light to be transmitted. Jun-ichi Nishizawa, a Japanese scientist at Tohoku University, proposed the use of optical fibers for communications in 1963. Nishizawa invented the PIN diode and the static induction transistor, both of which contributed to the development of optical fiber communications.
In 1966, Charles K. Kao and George Hockham at Standard Telecommunication Laboratories showed that the losses of in existing glass were due to contaminants which could potentially be removed.
Optical fiber with attenuation low enough for communication purposes was developed in 1970 by Corning Glass Works. At the same time, GaAs semiconductor lasers were developed that were compact and therefore suitable for transmitting light through fiber optic cables for long distances.
In 1973, Optelecom, Inc., co-founded by the inventor of the laser, Gordon Gould, received a contract from ARPA for one of the first optical communication systems. Developed for Army Missile Command in Huntsville, Alabama, the system was intended to allow a short-range missile with video processing to communicate by laser to the ground by means of a five-kilometer long optical fiber that unspooled from the missile as it flew. Optelecom then delivered the first commercial optical communications system to Chevron.
After a period of research starting from 1975, the first commercial fiber-optic telecommunications system was developed which operated at a wavelength around 0.8 μm and used GaAs semiconductor lasers. This first-generation system operated at a bit rate of with repeater spacing of up to 10 km. Soon on 22 April 1977, General Telephone and Electronics sent the first live telephone traffic through fiber optics at a throughput in Long Beach, California.
In October 1973, Corning Glass signed a development contract with CSELT and Pirelli aimed to test fiber optics in an urban environment: in September 1977, the second cable in this test series, named COS-2, was experimentally deployed in two lines in Turin, for the first time in a big city, at a speed of.
The second generation of fiber-optic communication was developed for commercial use in the early 1980s, operated at 1.3 μm and used InGaAsP semiconductor lasers. These early systems were initially limited by multi-mode fiber dispersion, and in 1981 the single-mode fiber was revealed to greatly improve system performance, however practical connectors capable of working with single mode fiber proved difficult to develop. Canadian service provider SaskTel had completed construction of what was then the world's longest commercial fiber optic network, which covered and linked 52 communities. By 1987, these systems were operating at bit rates of up to with repeater spacing up to.
The first transatlantic telephone cable to use optical fiber was TAT-8, based on Desurvire optimized laser amplification technology. It went into operation in 1988.
Third-generation fiber-optic systems operated at 1.55 μm and had losses of about. This development was spurred by the discovery of indium gallium arsenide and the development of the indium gallium arsenide photodiode by Pearsall. Engineers overcame earlier difficulties with pulse-spreading using conventional InGaAsP semiconductor lasers at that wavelength by using dispersion-shifted fibers designed to have minimal dispersion at 1.55 μm or by limiting the laser spectrum to a single longitudinal mode. These developments eventually allowed third-generation systems to operate commercially at with repeater spacing in excess of.
The fourth generation of fiber-optic communication systems used optical amplification to reduce the need for repeaters and wavelength-division multiplexing to increase data capacity. The introduction of WDM was the start of optical networking, as WDM became the technology of choice for fiber-optic bandwidth expansion. The first to market with a dense WDM system was Ciena Corp., in June 1996. The introduction of optical amplifiers and WDM caused system capacity to double every six months from 1992 until a bit rate of was reached by 2001. In 2006 a bit-rate of was reached over a single line using optical amplifiers., Japanese scientists transmitted 319 terabits per second over 3,000 kilometers with four-core fiber cables with standard cable diameter.
The focus of development for the fifth generation of fiber-optic communications is on extending the wavelength range over which a WDM system can operate. The conventional wavelength window, known as the C band, covers the wavelength range 1525–1565 nm, and dry fiber has a low-loss window promising an extension of that range to 1300–1650 nm. Other developments include the concept of optical solitons, pulses that preserve their shape by counteracting the effects of dispersion with the nonlinear effects of the fiber by using pulses of a specific shape.
In the late 1990s through 2000, industry promoters, and research companies such as KMI, and RHK predicted massive increases in demand for communications bandwidth due to increased use of the Internet, and commercialization of various bandwidth-intensive consumer services, such as video on demand. Internet Protocol data traffic was increasing exponentially, at a faster rate than integrated circuit complexity had increased under Moore's Law. From the bust of the dot-com bubble through 2006, however, the main trend in the industry has been consolidation of firms and offshoring of manufacturing to reduce costs. Companies such as Verizon and AT&T have taken advantage of fiber-optic communications to deliver a variety of high-throughput data and broadband services to consumers' homes.
The 2022 Russian Invasion of Ukraine has seen the usage of fiber optics for communication in drones. Their resilience to electronic warfare jamming has seen them being used by both sides.