Extracellular vesicle


Extracellular vesicles are lipid bilayer-delimited particles that are naturally released from almost all types of cells. EVs range in diameter from near the size of the smallest physically possible unilamellar liposome to as large as 10 microns or more, although the vast majority of EVs are smaller than 200 nm. EVs can be divided according to size and synthesis route into exosomes, microvesicles and apoptotic bodies. The composition of EVs varies depending on their parent cells, encompassing proteins, lipids, nucleic acids, metabolites, and even organelles. Most cells that have been studied to date are thought to release EVs, including some archaeal, bacterial, fungal, and plant cells that are surrounded by cell walls. A wide variety of EV subtypes have been proposed, defined variously by size, biogenesis pathway, cargo, cellular source, and function, leading to a historically heterogenous nomenclature including terms like exosomes and ectosomes.
Numerous functions of EVs have been established or postulated. The first evidence for the existence of EVs was enabled by the ultracentrifuge, the electron microscope, and functional studies of coagulation in the mid-20th century. A sharp increase in interest in EVs occurred in the first decade of the 21st century following the discovery that EVs could transfer nucleic acids such as RNA from cell to cell. Associated with EVs from certain cells or tissues, nucleic acids could be easily amplified as markers of disease and also potentially traced back to a cell of origin, such as a tumor cell. When EVs are taken up by other cells, they may alter the behaviour of the recipient cell, for instance EVs released by colorectal cancer cells increase migration of fibroblasts and thus EVs are of importance in forming tumour landscapes. This discovery also implied that EVs could be used for therapeutic purposes, such as delivering nucleic acids or other cargo to diseased tissue. Conversely, pharmacological inhibition of EV release, through Calixarene, can slow down progression of experimental pancreatic cancer. The growing interest in EVs as a nexus for therapeutic intervention was paralleled by formation of companies and funding programs focused on development of EVs as biomarkers or therapies of disease, the founding of an International Society for Extracellular Vesicles, and establishment of a scientific journal devoted to the field, the Journal of Extracellular Vesicles.

History

Evidence for the existence of EVs and their functions was first gathered by combined applications of ultracentrifugation, electron microscopy, and functional studies during the mid-20th century. Ultracentrifuged pellets from blood plasma were reported to have procoagulant properties by Erwin Chargaff and Randolph West in 1946. The platelet derivation and lipid-containing nature of these particles was further articulated by Peter Wolf. Around the same time, H. Clarke Anderson and Ermanno Bonucci separately described the calcifying properties of EVs in bone matrix.
Although the extracellular and vesicular properties of EVs had been recognized by numerous groups by the 1970s, the term "extracellular vesicle" was first used in a manuscript title in 1971. This electron microscopy study of the flagellate freshwater alga Ochromonas danica reported release of EVs from membranes including those of flagella. Soon thereafter, EVs were seen to be released from follicular thyroid cells of the bat Myotis lucifugus during arousal from hibernation, suggesting the possible involvement of EVs in endocrine processes. Reports of EVs in intestinal villi samples and, for the first time, in material from human cancer referred back to even earlier publications that furnished similar evidence, although conclusions about EV release had not then been drawn. EVs were also described in bovine serum and cell culture conditioned medium with distinctions made between "vesicles of the multivesicular body" and "microvesicles." These studies further noted the similarities of EVs and enveloped viruses.
In the early- to mid-1980s, the Stahl and Johnstone labs forged a deeper understanding of the release of EVs from reticulocytes, while progress was also made on EVs shed from tumor cells. The reticulocyte research, in particular, showed that EVs could be released not only from the plasma membrane or surface of the cell, but also by fusion of the multivesicular body with the plasma membrane. During this time, EVs were described by many names, sometimes in the same manuscript, such as "shedding vesicles," "membrane fragments," "plasma membrane vesicles," "micro-vesicles/microvesicles," "exosomes,", "inclusion vesicles," and more, or referred to by organ of origin, such as "prostasomes" that were found to enhance sperm motility in semen.
The involvement of EVs in immune responses became increasingly clear in the 1990s with findings of the group of Graça Raposo and others. A clinical trial of dendritic cell-derived EVs was performed in France just before the turn of the century. Cells of the immune system were found capable of transferring transmembrane proteins via EVs. For example, the HIV co-receptors CCR5 and CXCR4 could be transferred from an HIV-susceptible cell to a refractory cell by "microparticles," rendering the recipient cell susceptible to infection.
Beginning in 2006, several laboratories reported that EVs contain nucleic acids and have the ability to transfer them from cell to cell. Nucleic acids including DNAs and RNAs were even found to be functional in the recipient cell. Whether carrying DNA, RNA, surface molecules, or other factors, the involvement of EVs in cancer progression aroused considerable interest, leading to hypotheses that specific EVs could target specific cells due to "codes" displayed on their surface; create or enhance a metastatic niche; betray the presence of specific cancers; or be used as a therapy to target cancer cells. Meanwhile, strides were made in the understanding of vesicle biogenesis and subtypes.
Rapid growth of the EV research community in the early 2000s led to the creation of the International Society for Extracellular Vesicles, which has led efforts for rigor and standardization in the field including establishment of the Journal of Extracellular Vesicles. A plethora of national and regional EV societies have also been formed. In 2012, the Director's Office of the US National Institutes of Health announced a program for funding of EV and extracellular RNA studies, the Extracellular RNA Communication Consortium, which subsequently invested >USD 100 million in EV research. A second round of funding was announced in 2018. Commercial investment in EV diagnostics and therapeutics also grew during this time.

Biogenesis

Extracellular vesicles and particles are released by cells in different shapes and sizes. Diverse EV subtypes have been proposed, with names such as ectosomes, microvesicles, microparticles, exosomes, oncosomes, apoptotic bodies, and more. These EV subtypes have been defined by various, often overlapping, definitions, based mostly on biogenesis. However, EV subtypes may also be defined by size, constituent molecules, function, or method of separation. Because of the bewildering and sometimes contradictory definitions of different EV subtypes, the current scientific consensus is that "extracellular vesicle" and variations thereon are the preferred nomenclature unless specific biogenetic origin can be demonstrated. Subtypes of EVs may be defined by:

Plasma membrane origin

The terms "ectosome," "microvesicle", and "microparticle" refer to particles released from the surface of cells. Technically, the platelets of certain vertebrates, as well as red blood cells also fulfill the consensus definition of EVs. Especially in the field of platelet research, MP has been the standard nomenclature. Formation of ectosomes may in some cases result from directed processes, and in others from shear forces or adherence of the PM to a surface.

Endosomal origin

Exosome biogenesis begins with pinching off of endosomal invaginations into the multivesicular body, forming intraluminal vesicles. If the MVB fuses with the plasma membrane, the ILVs are released as "exosomes." The first publication to use the term "exosome" for EVs presented it as a synonym for "micro-vesicle." The term has also been used for EVs within specific size ranges, EVs separated using specific methods, or even all EVs.

Apoptotic bodies

Apoptotic bodies are EVs that are released by dying cells undergoing apoptosis. Since apoptotic cells tend to display phosphatidylserine in the outer bilayer of the cell membrane, apoptotic bodies tend to externalize PS, although other EVs may also do so. Apoptotic bodies may be quite large but may also measure in the submicron range. Apoptotic bodies are used to sequester mitochondria containing Reactive Oxygen Species and to signal for phagocytosis and destruction of proteins via lysosomal digestion.

Large oncosomes

In addition to the very large EVs released during apoptosis, micron-sized EVs may be produced by cancer cells, neurons, and other cells. When produced by cancer cells, these particles are termed "large oncosomes" and may reach 20 microns or more in diameter. Large oncosomes can attain sizes comparable to individual cells, but they do not contain full nuclei. They have been shown to contribute to metastasis in a mouse model and a human fibroblast cell culture model of prostate cancer. Cellular internalization of large oncosomes can reprogram non-neoplastic brain cells to divide and migrate in primary tissue culture, and higher numbers of large oncosomes isolated from blood samples from glioblastoma patients were correlated with more advanced disease progression.

Exophers

Exophers are a class of large EV, approximately four microns in diameter, observed in model organisms ranging from Caenorhabditis elegans to mice. When genetically modified to express aggregating proteins, neurons were observed to sequester the aggregates into a portion of the cell and release them within a large EV called an exopher. They are hypothesized to be a mechanism for disposal of unwanted cellular material including protein aggregates and damaged organelles. Exophers can remain connected to the cell body by a thin, membranous filament resembling a tunneling nanotube.