Medical research
Medical research, also known as health research, refers to the process of using scientific methods with the aim to produce knowledge about human diseases, the prevention and treatment of illness, and the promotion of health.
Medical research encompasses a wide array of research, extending from "basic research", – involving fundamental scientific principles that may apply to a preclinical understanding – to clinical research, which involves studies of people who may be subjects in clinical trials. Within this spectrum is applied research, or translational research, conducted to expand knowledge in the field of medicine.
Both clinical and preclinical research phases exist in the pharmaceutical industry's drug development pipelines, where the clinical phase is denoted by the term clinical trial. However, only part of the clinical or preclinical research is oriented towards a specific pharmaceutical purpose. The need for fundamental and mechanism-based understanding, diagnostics, medical devices, and non-pharmaceutical therapies means that pharmaceutical research is only a small part of medical research.
Most of the research in the field is pursued by biomedical scientists, but significant contributions are made by other type of biologists. Medical research on humans has to strictly follow the medical ethics sanctioned in the Declaration of Helsinki and the institutional review board where the research is conducted. In all cases, research ethics are expected.
Impact
The increased longevity of humans over the past century can be significantly attributed to advances resulting from medical research. Among the major benefits of medical research have been vaccines for measles and polio, insulin treatment for diabetes, classes of antibiotics for treating a host of maladies, medication for high blood pressure, improved treatments for AIDS, statins and other treatments for atherosclerosis, new surgical techniques such as microsurgery, and increasingly successful treatments for cancer. New, beneficial tests and treatments are expected as a result of the Human Genome Project. Many challenges remain, however, including the appearance of antibiotic resistance and the obesity epidemic.Phases of medical research
Basic medical research
Example areas in basic medical research include: cellular and molecular biology, medical genetics, immunology, neuroscience, and psychology. Researchers, mainly in universities or government-funded research institutes, aim to establish an understanding of the cellular, molecular and physiological mechanisms of human health and disease.Pre-clinical research
covers understanding of mechanisms that may lead to clinical research with people. Typically, the work requires no ethical approval, is supervised by scientists rather than physicians, and is carried out in a university or company, rather than a hospital.Clinical research
is carried out with people as the experimental subjects. It is generally supervised by physicians and conducted by nurses in a medical setting, such as a hospital or research clinic, and requires ethical approval.Role of patients and the public
Besides being participants in a clinical trial, members of the public can actively collaborate with researchers in designing and conducting medical research. This is known as patient and public involvement. Public involvement involves a working partnership between patients, caregivers, people with lived experience, and researchers to shape and influence what is researcher and how. PPI can improve the quality of research and make it more relevant and accessible. People with current or past experience of illness can provide a different perspective than professionals and complement their knowledge. Through their personal knowledge they can identify research topics that are relevant and important to those living with an illness or using a service. They can also help to make the research more grounded in the needs of the specific communities they are part of. Public contributors can also ensure that the research is presented in plain language that is clear to the wider society and the specific groups it is most relevant for.Funding
in many countries derives from research bodies and private organizations which distribute money for equipment, salaries, and research expenses. United States, Europe, Asia, Canada, and Australia combined spent $265.0 billion in 2011, which reflected growth of 3.5% annually from $208.8 billion in 2004. The United States contributed 49% of governmental funding from these regions in 2011 compared to 57% in 2004.In the United Kingdom, funding bodies such as the National Institute for Health and Care Research and the Medical Research Council derive their assets from UK tax payers, and distribute revenues to institutions by competitive research grants. The Wellcome Trust is the UK's largest non-governmental source of funds for biomedical research and provides over £600 million per year in grants to scientists and funds for research centres.
In the United States, data from ongoing surveys by the National Science Foundation show that federal agencies provided only 44% of the $86 billion spent on basic research in 2015. The National Institutes of Health and pharmaceutical companies collectively contribute $26.4 billion and $27 billion, which constitute 28% and 29% of the total, respectively. Other significant contributors include biotechnology companies, medical device companies, other federal sources, and state and local governments. Foundations and charities, led by the Bill and Melinda Gates Foundation, contributed about 3% of the funding. These funders are attempting to maximize their return on investment in public health. One method proposed to maximize the return on investment in medicine is to fund the development of open source hardware for medical research and treatment.
The enactment of orphan drug legislation in some countries has increased funding available to develop drugs meant to treat rare conditions, resulting in breakthroughs that previously were uneconomical to pursue.
Government-funded biomedical research
Since the establishment of the National Institutes of Health in the mid-1940s, the main source of U.S. federal support of biomedical research, investment priorities and levels of funding have fluctuated. From 1995 to 2010, NIH support of biomedical research increased from 11 billion to 27 billion Despite the jump in federal spending, advancements measured by citations to publications and the number of drugs passed by the FDA remained stagnant over the same time span. Financial projections indicate federal spending will remain constant in the near future.US federal funding trends
The National Institutes of Health is the agency that is responsible for management of the lion's share of federal funding of biomedical research. It funds over 280 areas directly related to health. Over the past century there were two notable periods of NIH support.From 1995 to 1996 funding increased from $8.877 billion to $9.366 billion, years which represented the start of what is considered the "doubling period" of rapid NIH support. The second notable period started in 1997 and ended in 2010, a period where the NIH moved to organize research spending for engagement with the scientific community.
Privately (industry) funded biomedical research
Since 1980 the share of biomedical research funding from industry sources has grown from 32% to 62%, which has resulted in the development of numerous life-saving medical advances. The relationship between industry and government-funded research in the US has seen great movement over the years. The 1980 Bayh–Dole Act was passed by Congress to foster a more constructive relationship between the collaboration of government and industry funded biomedical research. The Bayh Doyle Act gave private corporations the option of applying for government funded grants for biomedical research which in turn allowed the private corporations to license the technology. Both government and industry research funding increased rapidly from between the years of 1994–2003; industry saw a compound average annual growth rate of 8.1% a year and slowed only slightly to a compound average annual growth rate of 5.8% from 2003 to 2008.Conflicts of interests
"Conflict of interest" in the field of medical research has been defined as "a set of conditions in which professional judgment concerning a primary interest tends to be unduly influenced by a secondary interest."Regulation on industry funded biomedical research has seen great changes since Samuel Hopkins Adams declaration. In 1906 Congress passed the Pure Food and Drug Act of 1906. In 1912 Congress passed the Shirley Amendment to prohibit the wide dissemination of false information on pharmaceuticals. The Food and Drug Administration was formally created in 1930 under the McNarey Mapes Amendment to oversee the regulation of Food and Drugs in the United States. In 1962 the Kefauver-Harris Amendments to the Food, Drug and Cosmetics Act made it so that before a drug was marketed in the United States the FDA must first approve that the drug was safe. The Kefauver-Harris amendments also mandated that more stringent clinical trials must be performed before a drug is brought to the market. The Kefauver-Harris amendments were met with opposition from industry due to the requirement of lengthier clinical trial periods that would lessen the period of time in which the investor is able to see return on their money. In the pharmaceutical industry patents are typically granted for a 20-year period of time, and most patent applications are submitted during the early stages of the product development. According to Ariel Katz on average after a patent application is submitted it takes an additional 8 years before the FDA approves a drug for marketing. As such this would leave a company with only 12 years to market the drug to see a return on their investments. After a sharp decline of new drugs entering the US market following the 1962 Kefauver-Harris amendments economist Sam Petlzman concluded that cost of loss of innovation was greater than the savings recognized by consumers no longer purchasing ineffective drugs. In 1984 the Hatch-Waxman Act or the Drug Price Competition and Patent Term Restoration Act of 1984 was passed by congress. The Hatch-Waxman Act was passed with the idea that giving brand manufacturers the ability to extend their patent by an additional 5 years would create greater incentives for innovation and private sector funding for investment.
The relationship that exists with industry funded biomedical research is that of which industry is the financier for academic institutions which in turn employ scientific investigators to conduct research. A fear that exists wherein a project is funded by industry is that firms might negate informing the public of negative effects to better promote their product.
A list of studies shows that public fear of the conflicts of interest that exist when biomedical research is funded by industry can be considered valid after a 2003 publication of "Scope and Impact of Financial Conflicts of Interest in Biomedical Research" in The Journal of American Association of Medicine. This publication included 37 different studies that met specific criteria to determine whether or not an academic institution or scientific investigator funded by industry had engaged in behavior that could be deduced to be a conflict of interest in the field of biomedical research. Survey results from one study concluded that 43% of scientific investigators employed by a participating academic institution had received research related gifts and discretionary funds from industry sponsors. Another participating institution surveyed showed that 7.6% of investigators were financially tied to research sponsors, including paid speaking engagements, consulting arrangements, advisory board positions and equity. A 1994 study concluded that 58% out of 210 life science companies indicated that investigators were required to withhold information pertaining to their research as to extend the life of the interested companies' patents. Rules and regulations regarding conflict of interest disclosures are being studied by experts in the biomedical research field to eliminate conflicts of interest that could possibly affect the outcomes of biomedical research.