Evolutionary mismatch
Evolutionary mismatch is the evolutionary biology concept that a previously advantageous trait may become maladaptive due to change in the environment, especially when change is rapid. It is said this can take place in humans as well as other animals.
Environmental change leading to evolutionary mismatch can be broken down into two major categories: temporal or spatial. Since environmental change occurs naturally and constantly, there will certainly be examples of evolutionary mismatch over time. However, because large-scale natural environmental change – like a natural disaster – is often rare, it is less often observed. Another more prevalent kind of environmental change is anthropogenic. In recent times, humans have had a large, rapid, and trackable impact on the environment, thus creating scenarios where it is easier to observe evolutionary mismatch.
Because of the mechanism of evolution by natural selection, the environment determines which traits will persist in a population. Therefore, there will be a gradual weeding out of disadvantageous traits over several generations as the population becomes more adapted to its environment. Any significant change in a population's traits that cannot be attributed to other factors will be responsive to a change in that population's environment; in other words, natural selection is inherently reactive. Shortly following an environmental change, traits that evolved in the previous environment, whether they were advantageous or neutral, are persistent for several generations in the new environment. Because evolution is gradual and environmental changes often occur very quickly on a geological scale, there is always a period of "catching-up" as the population evolves to become adapted to the environment. It is this temporary period of "disequilibrium" that is referred to as mismatch. Mismatched traits are ultimately addressed in one of several possible ways: the organism may evolve such that the maladaptive trait is no longer expressed, the organism may decline and/or become extinct as a result of the disadvantageous trait, or the environment may change such that the trait is no longer selected against.
History
As evolutionary thought became more prevalent, scientists studied and attempted to explain the existence of disadvantageous traits, known as maladaptations, that are the basis of evolutionary mismatch.The theory of evolutionary mismatch began under the term evolutionary trap as early as the 1940s. In his 1942 book, evolutionary biologist Ernst Mayr described evolutionary traps as the phenomenon that occurs when a genetically uniform population suited for a single set of environmental conditions is susceptible to extinction from sudden environment changes. Since then, key scientists such as Warren J. Gross and Edward O. Wilson have studied and identified numerous examples of evolutionary traps.
The first occurrence of the term "evolutionary mismatch" may have been in a paper by Jack E. Riggs published in the Journal of Clinical Epidemiology in 1993. In the years to follow, the term evolutionary mismatch has become widely used to describe biological maladaptations in a wide range of disciplines. A coalition of modern scientists and community organizers assembled to found the Evolution Institute in 2008, and in 2011 published a more recent culmination of information on evolutionary mismatch theory in an article by Elisabeth Lloyd, David Sloan Wilson, and Elliott Sober. In 2018 a popular science book appeared by evolutionary psychologists on evolutionary mismatch and its implications for humans.
Mismatch in human evolution
Neolithic Revolution: transitional context
The Neolithic Revolution brought about significant evolutionary changes in humans; namely the transition from a hunter-gatherer lifestyle, in which humans foraged for food, to an agricultural lifestyle. This change occurred approximately 10,000–12,000 years ago. Humans began to domesticate both plants and animals, allowing for the maintenance of constant food resources. This transition quickly and dramatically changed the way that humans interact with the environment, with societies taking up practices of farming and animal husbandry. However, human bodies had evolved to be adapted to their previous foraging lifestyle. The slow pace of evolution in comparison with the very fast pace of human advancement allowed for the persistence of these adaptations in an environment where they are no longer necessary. In some human societies that now function in a vastly different way from the hunter-gatherer lifestyle, these outdated adaptations now lead to the presence of maladaptive, or mismatched, traits.Obesity and diabetes
Human bodies are predisposed to maintain homeostasis, especially when storing energy as fat. This trait serves as the main basis for the "thrifty gene hypothesis", the idea that "feast-or-famine conditions during human evolutionary development naturally selected for people whose bodies were efficient in their use of food calories". Hunter-gatherers, who used to live under environmental stress, benefit from this trait; there was an uncertainty of when the next meal would be, and they would spend most of their time performing high levels of physical activity. Therefore, those that consumed many calories would store the extra energy as fat, which they could draw upon in times of hunger.However, modern humans have evolved to a world of more sedentary lifestyles and convenience foods. People are sitting more throughout their days, whether it be in their cars during rush hour or in their cubicles during their full-time jobs. Less physical activity in general means fewer calories burned throughout the day. Human diets have changed considerably over the 10,000 years since the advent of agriculture, with more processed foods in their diets that lack nutritional value and lead them to consume more sodium, sugar, and fat. These high-calorie, nutrient-deficient foods cause people to consume more calories than they burn. Fast food combined with decreased physical activity means that the "thrifty gene" that once benefited human predecessors now works against them, causing their bodies to store more fat and leading to higher levels of obesity in the population.
Obesity is one consequence of mismatched genes. Known as "metabolic syndrome", this condition is also associated with other health concerns, including insulin resistance, where the body no longer responds to insulin secretion, so blood glucose levels are unable to be lowered, which can lead to type 2 diabetes.