Geomagnetic storm
A geomagnetic storm, also known as a magnetic storm, is a temporary disturbance of the Earth's magnetosphere that is driven by interactions between the magnetosphere and large-scale transient plasma and magnetic field structures that originate on or near the Sun.
The structures that produce geomagnetic storms include interplanetary coronal mass ejections and corotating interaction regions. The former often originate from solar active regions, while the latter originate at the boundary between high- and low-speed streams of solar wind. The frequency of geomagnetic storms increases and decreases with the sunspot cycle. During solar maxima, geomagnetic storms occur more often, with the majority driven by CMEs.
When these structures reach Earth, the increase in the solar wind pressure initially compresses the magnetosphere. The solar wind's magnetic field interacts with the Earth's magnetic field and transfers an increased energy into the magnetosphere. Both interactions cause an increase in plasma movement through the magnetosphere and an increase in electric current in the magnetosphere and ionosphere. During the main phase of a geomagnetic storm, enhanced magnetospheric currents weaken the Earth’s dayside magnetic field, so that the solar wind dynamic pressure pushes the magnetopause boundary inward, closer to Earth.
Several space weather phenomena tend to be associated with geomagnetic storms. These include solar energetic particle events, geomagnetically induced currents, ionospheric storms and disturbances that cause radio and radar scintillation, disruption of navigation by magnetic compass and auroral displays at much lower magnetic latitudes than normal.
The largest recorded geomagnetic storm, the Carrington Event in September 1859, took down parts of the recently created US telegraph network, starting fires and electrically shocking telegraph operators. In 1989, a geomagnetic storm energized ground induced currents that disrupted electric power distribution throughout most of Quebec and caused aurorae as far south as Texas.
Definition
A geomagnetic storm is defined by changes in the Dst index. The Dst index estimates the globally averaged change of the horizontal component of the Earth's magnetic field at the magnetic equator based on measurements from a few magnetometer stations. Dst is computed once per hour and reported in near-real-time. During quiet times, Dst is between +20 and −20 nano-Tesla.A geomagnetic storm has three phases: initial, main and recovery. The initial phase is characterized by Dst increasing by 20 to 50 nT in tens of minutes. The initial phase is also referred to as a storm sudden commencement. However, not all geomagnetic storms have an initial phase and not all sudden increases in Dst or SYM-H are followed by a geomagnetic storm. The main phase of a geomagnetic storm is defined by Dst decreasing to less than −50 nT. The selection of −50 nT to define a storm is somewhat arbitrary. The minimum value during a storm will be between −50 and approximately −600 nT. The duration of the main phase is typically 2–8 hours. The recovery phase is when Dst changes from its minimum value to its quiet time value. The recovery phase may last as short as 8 hours or as long as 7 days.
The size of a geomagnetic storm is classified as moderate, intense or super-storm.
Measuring intensity
Geomagnetic storm intensity is reported in several different ways, including:- K-index
- A-index
- The G-scale used by the U.S. National Oceanic and Atmospheric Administration, which rates the storm from G1 to G5, where G1 is the weakest storm classification, and G5 is the strongest.
History of the theory
Occurrences
The first scientific observation of the effects of a geomagnetic storm occurred early in the 19th century: from May 1806 until June 1807, Alexander von Humboldt recorded the bearing of a magnetic compass in Berlin. On 21 December 1806, he noticed that his compass had become erratic during a bright auroral event.On September 1–2, 1859, the largest recorded geomagnetic storm occurred. From August 28 until September 2, 1859, numerous sunspots and solar flares were observed on the Sun, with the largest flare on September 1. This is referred to as the solar storm of 1859 or the Carrington Event. It can be assumed that a massive coronal mass ejection was launched from the Sun and reached the Earth within eighteen hours—a trip that normally takes three to four days. The horizontal field was reduced by 1600 nT as recorded by the Colaba Observatory. It is estimated that Dst would have been approximately −1760 nT. Telegraph wires in both the United States and Europe experienced induced voltage increases, in some cases even delivering shocks to telegraph operators and igniting fires. Aurorae were seen as far south as Hawaii, Mexico, Cuba and Italy—phenomena that are usually only visible in polar regions. Ice cores show evidence that events of similar intensity recur at an average rate of approximately once per 500 years.
Since 1859, less severe storms have occurred, notably the aurora of November 17, 1882 and the May 1921 geomagnetic storm, both with disruption of telegraph service and initiation of fires, and 1960, when widespread radio disruption was reported.
In early August 1972, a series of flares and solar storms peaks with a flare estimated around X20 producing the fastest CME transit ever recorded and a severe geomagnetic and proton storm that disrupted terrestrial electrical and communications networks, as well as satellites, and spontaneously detonated numerous U.S. Navy magnetic-influence sea mines in North Vietnam.
The March 1989 geomagnetic storm caused the collapse of the Hydro-Québec power grid in seconds as equipment protection relays tripped in a cascading sequence. Six million people were left without power for nine hours. The storm caused auroras as far south as Texas and Florida. The storm causing this event was the result of a coronal mass ejected from the Sun on March 9, 1989. The minimum Dst was −589 nT.
On July 14, 2000, an X5 class flare erupted and a coronal mass was launched directly at the Earth. A geomagnetic super storm occurred on July 15–17; the minimum of the Dst index was −301 nT. Despite the storm's strength, no power distribution failures were reported. The Bastille Day event was observed by Voyager 1 and Voyager 2, thus it is the farthest out in the Solar System that a solar storm has been observed.
Seventeen major flares erupted on the Sun between 19 October and 5 November 2003, including perhaps the most intense flare ever measured on the GOES XRS sensor—a huge X28 flare, resulting in an extreme radio blackout, on 4 November. These flares were associated with CME events that caused three geomagnetic storms between 29 October and 2 November, during which the second and third storms were initiated before the previous storm period had fully recovered. The minimum Dst values were −151, −353 and −383 nT. Another storm in this sequence occurred on 4–5 November with a minimum Dst of −69 nT. The last geomagnetic storm was weaker than the preceding storms, because the active region on the Sun had rotated beyond the meridian where the central portion CME created during the flare event passed to the side of the Earth. The whole sequence became known as the Halloween Solar Storm. The Wide Area Augmentation System operated by the Federal Aviation Administration was offline for approximately 30 hours due to the storm. The Japanese ADEOS-2 satellite was severely damaged and the operation of many other satellites were interrupted due to the storm.
Interactions with planetary processes
The solar wind also carries with it the Sun's magnetic field. This field will have either a North or South orientation. If the solar wind has energetic bursts, contracting and expanding the magnetosphere, or if the solar wind takes a southward polarization, geomagnetic storms can be expected. The southward field causes magnetic reconnection of the dayside magnetopause, rapidly injecting magnetic and particle energy into the Earth's magnetosphere.During a geomagnetic storm, the ionosphere's F2 layer becomes unstable, fragments, and may even disappear. In the northern and southern pole regions of the Earth, auroras are observable.
Instruments
s monitor the auroral zone as well as the equatorial region. Two types of radar, coherent scatter and incoherent scatter, are used to probe the auroral ionosphere. By bouncing signals off ionospheric irregularities, which move with the field lines, one can trace their motion and infer magnetospheric convection.Spacecraft instruments include:
- Magnetometers, usually of the flux gate type. Usually these are at the end of booms, to keep them away from magnetic interference by the spacecraft and its electric circuits.
- Electric sensors at the ends of opposing booms are used to measure potential differences between separated points, to derive electric fields associated with convection. The method works best at high plasma densities in low Earth orbit; far from Earth long booms are needed, to avoid shielding-out of electric forces.
- Radio sounders from the ground can bounce radio waves of varying frequency off the ionosphere, and by timing their return determine the electron density profile—up to its peak, past which radio waves no longer return. Radio sounders in low Earth orbit aboard the Canadian Alouette 1 and Alouette 2, beamed radio waves earthward and observed the electron density profile of the "topside ionosphere". Other radio sounding methods were also tried in the ionosphere.
- Particle detectors include a Geiger counter, as was used for the original observations of the Van Allen radiation belt. Scintillator detectors came later, and still later "channeltron" electron multipliers found particularly wide use. To derive charge and mass composition, as well as energies, a variety of mass spectrograph designs were used. For energies up to about 50 keV time-of-flight spectrometers are widely used.