Egyptian blue
Egyptian blue, also known as calcium copper silicate 4 ) or cuprorivaite, is a pigment that was used in ancient Egypt for thousands of years. It is considered to be the first synthetic pigment.
Egyptian blue is produced from a mixture of silica, lime, copper, and an alkali. Its color is due to a calcium-copper tetrasilicate CaCuSi4O10 of the same composition as the naturally occurring mineral cuprorivaite. It was first synthesized in Egypt during the Fourth Dynasty and used extensively until the end of the Roman period in Europe, after which its use declined significantly.
Apart from Egypt, it has also been found in the Near East, the Eastern Mediterranean, and the limits of the Roman Empire. It is unclear whether the pigment's existence elsewhere was a result of parallel invention or evidence of the technology's spread from Egypt to those areas.
After the Roman era, Egyptian blue fell out of use and, thereafter, the manner of its creation was forgotten. In modern times, scientists have been able to analyze its chemistry and reconstruct how to make it.
History
The ancient Egyptians held the color blue in very high regard and were eager to present it on many media and in a variety of forms. They also desired to imitate the semiprecious stones turquoise and lapis lazuli, which were valued for their rarity and stark blue color. Use of naturally occurring minerals such as azurite to acquire this blue was impractical, as these minerals were rare and difficult to work. Therefore, to have access to the large quantities of blue color to meet demand, the Egyptians needed to manufacture the pigment themselves.The earliest evidence for the use of Egyptian blue, identified by Egyptologist Lorelei H. Corcoran of The University of Memphis, is on an alabaster bowl dated to the late pre-dynastic period or Naqada III, excavated at Hierakonpolis, and now in the Museum of Fine Arts, Boston. In the Middle Kingdom it continued to be used as a pigment in the decoration of tombs, wall paintings, furnishings, and statues, and by the New Kingdom began to be more widely used in the production of numerous objects. Its use continued throughout the Late period and Greco-Roman period, only dying out in the fourth century AD, when the secret to its manufacture was lost.
No written information exists in ancient Egyptian texts about the manufacture of Egyptian blue in antiquity, and it was first mentioned only in Roman literature by Vitruvius during the first century BC. He refers to it as caeruleum and describes in his work De architectura how it was produced by grinding sand, copper, and natron, and heating the mixture, shaped into small balls, in a furnace. Lime is necessary for the production as well, but probably lime-rich sand was used. Theophrastus gives it the Greek term κύανος, which originally probably referred to lapis lazuli. Finally, only at the beginning of the nineteenth century was interest renewed in learning more about its manufacture when it was investigated by Humphry Davy in 1815, and others such as W. T. Russell and F. Fouqué.
Nomenclature
The ancient Egyptian word wikt:wꜣḏ#Adjective signifies blue, blue-green, and green.The term for it in the Egyptian language is ḫsbḏ-ỉrjt, which referred to artificial lapis lazuli. It was used in antiquity as a blue pigment to color a variety of different media such as stone, wood, plaster, papyrus, and canvas, and in the production of numerous objects, including cylinder seals, beads, scarabs, inlays, pots, and statuettes. Sometimes, it is referred to in Egyptological literature as blue frit. Some have argued that this is an erroneous term that should be reserved for use to describe the initial phase of glass or glaze production, while others argue that Egyptian blue is a frit in both the fine and coarse form since it is a product of solid state reaction. Its characteristic blue color, resulting from one of its main components—copper—ranges from a light to a dark hue, depending on differential processing and composition.
It was known to the Romans by the name cerulean.
The first recorded use of "Egyptian blue" as a color name in English was in 1809.
Composition and manufacture
Several experiments have been carried out by scientists and archaeologists interested in analyzing the composition of Egyptian blue and the techniques used to manufacture it. It is now generally regarded as a multiphase material that was produced by heating together quartz sand, a copper compound, calcium carbonate, and a small amount of an alkali at temperatures ranging between for several hours. The result is cuprorivaite or Egyptian blue, carbon dioxide, and water vapor:In its final state, Egyptian blue consists of rectangular blue crystals together with unreacted quartz and some glass. From the analysis of a number of samples from Egypt and elsewhere, the weight percentage of the materials used to obtain Egyptian blue in antiquity was determined usually to range within these amounts:
- 60–70% silica
- 7–15% calcium oxide
- 10–20% copper oxide
- 64% silica
- 15% calcium oxide
- 21% copper oxide
In addition to the way the different compositions influenced texture, the way Egyptian blue was processed also had an effect on its texture, in terms of coarseness and fineness. Following a number of experiments, Tite et al. concluded that for fine-textured Egyptian blue, two stages were necessary to obtain uniformly interspersed crystals. First, the ingredients are heated, and the result is a coarse-textured product. This is then ground to a fine powder and water is added. The paste is then reshaped and fired again at temperatures ranging between 850 and 950 °C for one hour. These two stages possibly were needed to produce a paste that was fine enough for the production of small objects. Coarse-textured Egyptian blue, though, would not have gone through the second stage. Since it usually is found in the form of slabs and balls, these either could have been awaiting to be processed through a second stage, where they would be ground and finely textured, or they would have been ground for use as a blue pigment.
The shade of blue reached was also related to the coarseness and fineness of Egyptian blue as it was determined by the degree of aggregation of the Egyptian blue crystals. Coarse Egyptian blue was relatively thick in form, due to the large clusters of crystals which adhere to the unreacted quartz. This clustering results in a dark blue color that is the appearance of coarse Egyptian blue. Alternatively, fine-textured Egyptian blue consists of smaller clusters that are uniformly interspersed between the unreacted quartz grains and tends to be light blue in color. Diluted light blue, though, is used to describe the color of fine-textured Egyptian blue that has a large amount of glass formed in its composition, which masks the blue color, and gives it a diluted appearance. It depends on the level of alkali added to the mixture, so with more alkali, more glass formed, and the more diluted the appearance. This type of Egyptian blue is especially evident during the eighteenth dynasty and later, and probably is associated with the surge in glass technology at this time.
If certain conditions were not met, the Egyptian blue would not be satisfactorily produced. For example, if the temperatures were above 1050 °C, it would become unstable. If too much lime was added, wollastonite forms and gives the pigment a green color. Too much of the copper ingredients results in excesses of copper oxides cuprite and tenorite.
Materials
The main component of Egyptian blue was the silica, and quartz sand found adjacent to the sites where Egyptian blue was being manufactured may have been its source, although no concrete evidence supports this hypothesis. The only evidence cited is by Jakcsh et al., who found crystals of titanomagnetite, a mineral found in desert sand, in samples collected from the tomb of Sabni. Its presence in Egyptian blue indicates that quartz sand, rather than flint or chert, was used as the silica source. This contrasts with the source of silica used for glass-making at Qantir, which is quartz pebbles and not sand.It is believed that calcium oxide was not added intentionally on its own during the manufacture of Egyptian blue, but introduced as an impurity in the quartz sand and alkali. As to whether the craftsmen involved in the manufacture realized the importance of adding lime to the Egyptian blue mixture is not clear from this.
The source of copper could have been either a copper ore, filings from copper ingots, or bronze scrap and other alloys. Before the New Kingdom, evidence is scarce as to which copper source was being used, but it is believed to have been copper ores. During the New Kingdom, evidence has been found for the use of copper alloys, such as bronze, due to the presence of varying amounts of tin, arsenic, or lead found in the Egyptian blue material. The presence of tin oxide could have come from copper ores that contained tin oxide and not from the use of bronze. However, no copper ores have been found with these amounts of tin oxide. Why a switch from the use of copper ores in earlier periods, to the use of bronze scrap during the Late Bronze Age is unclear as yet.
The total alkali content in analyzed samples of Egyptian blue is greater than 1%, suggesting the alkali was introduced deliberately into the mixture and not as an impurity from other components. Sources of alkali either could have been natron from areas such as Wadi Natroun and El-Kab, or plant ash. By measuring the amounts of potash and magnesia in the samples of Egyptian blue, it is generally possible to identify which source of alkali had been used, since the plant ash contains higher amounts of potash and magnesia than the natron. However, due to the low concentration of alkali in Egyptian blue, which is a mere 4% or less, compared to glass, for example, which is at 10–20%, identifying the source is not always easy. The alkali source likely was natron, although the reasons for this assumption are unclear. However, analysis by Jaksch et al. of various samples of Egyptian blue identified variable amounts of phosphorus, suggesting the alkali source used was plant ash and not natron. Since the glass industry during the Late Bronze Age used plant ash as its source of alkali, a link in terms of the alkali used for Egyptian blue before and after the introduction of the glass industry might have been possible.