Dry lubricant
Dry lubricants or solid lubricants are materials that, despite being in the solid phase, are able to reduce friction between two surfaces sliding against each other without the need for a liquid oil medium.
The two main dry lubricants are graphite and molybdenum disulfide. They offer lubrication at temperatures higher than liquid and oil-based lubricants operate. Dry lubricants are often used in applications such as locks or dry lubricated bearings. Such materials can operate up to 350 °C in oxidizing environments and even higher in reducing / non-oxidizing environments. The low-friction characteristics of most dry lubricants are attributed to a layered structure on the molecular level with weak bonding between layers. Such layers are able to slide relative to each other with minimal applied force, thus giving them their low friction properties.
However, a layered crystal structure alone is not necessarily sufficient for lubrication. In fact, there are some solids with non-lamellar structures that function well as dry lubricants in some applications. These include certain soft metals, polytetrafluroethylene, some solid oxides, rare-earth fluorides, and even diamond.
Limited interest has been shown in low friction properties of compacted oxide glaze layers formed at several hundred degrees Celsius in metallic sliding systems. However, practical use is still many years away due to their physically unstable nature.
The four most commonly used solid lubricants are:
- Graphite. Used in air compressors, food industry, railway track joints, brass instrument valves, piano actions, open gear, ball bearings, machine-shop works, etc. It is also very common for lubricating locks, since a liquid lubricant allows particles to get stuck in the lock worsening the problem. It is often used to lubricate the internal moving parts of firearms in sandy environments.
- Molybdenum disulfide. Used in CV joints and space vehicles. Does lubricate in vacuum.
- Hexagonal boron nitride. Uses as high-temperature lubricants and mold release agents. Used in space vehicles. Also called "white graphite."
- Tungsten disulfide. Similar usage as molybdenum disulfide, but due to the high cost only found in some dry lubricated bearings.
Structure-function relationship
The lubricity of many solids is attributable to a lamellar structure. The lamellae orient parallel to the surface in the direction of motion and slide easily over each other resulting in low friction and preventing contact between sliding components even under high loads. Large particles perform best on rough surfaces at low speed, finer particles on smoother surfaces and at higher speeds. These materials may be added in the form of dry powder to liquid lubricants to modify or enhance their properties.Other components that are useful solid lubricants include boron nitride, polytetrafluorethylene, talc, calcium fluoride, cerium fluoride, and tungsten disulfide.
Applications
Solid lubricants are useful for conditions when conventional lubricants are inadequate, such as:- Reciprocating motion. A typical application is a sliding or reciprocating motion that requires lubrication to minimize wear, as, for example, in gear and chain lubrication. Liquid lubricants will squeeze out while solid lubricants do not escape, preventing fretting, corrosion, and galling.
- Ceramics. Another application is for cases where chemically active lubricant additives have not been found for a particular surface, such as polymers and ceramics.
- High temperature. Graphite and MoS2 act as lubricants at high temperature and in oxidizing atmosphere environments, where liquid lubricants typically will not survive. A typical application involves fasteners that are easily tightened and unscrewed after a long stay at high temperatures.
- Extreme contact pressures. The lamellar structure orients parallel to the sliding surface, resulting in high bearing-load combined with a low shear stress. Most applications in metal forming that involve plastic deformation use solid lubricants.
Graphite
Graphite is best suited for lubrication in air. Water vapor is a necessary component for graphite lubrication. The adsorption of water reduces the bonding energy between the hexagonal planes of the graphite to a lower level than the adhesion energy between a substrate and the graphite. Because water vapor is a requirement for lubrication, graphite is not effective in vacuum. Because it is electrically conductive, graphite can promote galvanic corrosion. In an oxidative atmosphere, graphite is effective at high temperatures up to 450 °C continuously and can withstand much higher temperature peaks.
Graphite is characterized by two main groups: natural and synthetic.
- Synthetic graphite is a high temperature sintered product and is characterized by its high purity of carbon. Primary grade synthetic graphite can approach the good lubricity of quality natural graphite.
- Natural graphite is derived from mining. The quality of natural graphite varies as a result of the ore quality and its post-mining processing. The end product is graphite with a content of carbon, sulfur, SiO2, and ash. The higher the carbon content and the degree of graphitization the better the lubricity and resistance to oxidation.