Disproportionation
In chemistry, disproportionation, sometimes called dismutation, is a redox reaction in which one compound of intermediate oxidation state converts to two compounds, one of higher and one of lower oxidation state. The reverse of disproportionation, such as when a compound in an intermediate oxidation state is formed from precursors of lower and higher oxidation states, is called comproportionation, also known as symproportionation.
More generally, the term can be applied to any desymmetrizing reaction where two molecules of one type react to give one each of two different types:
This expanded definition is not limited to redox reactions, but also includes some molecular autoionization reactions, such as the self-ionization of water. In contrast, some authors use the term redistribution to refer to reactions of this type when only ligand exchange but no redox is involved and distinguish such processes from disproportionation and comproportionation.
For example, the Schlenk equilibrium
is an example of a redistribution reaction.
History
The first disproportionation reaction to be studied in detail was:This was examined using tartrates by Johan Gadolin in 1788. In the Swedish version of his paper he called it söndring.
Examples
- Mercury chloride disproportionates upon UV-irradiation:
- Phosphorous acid disproportionates upon heating to 200°C to give phosphoric acid and phosphine:
- Desymmetrizing reactions are sometimes referred to as disproportionation, as illustrated by the thermal degradation of bicarbonate:
- Another variant on disproportionation is radical disproportionation, in which two radicals form an alkene and an alkane.
- Disproportionation of sulfur intermediates by microorganisms is widely observed in sediments.
- Chlorine gas reacts with concentrated sodium hydroxide to form sodium chloride, sodium chlorate and water. The ionic equation for this reaction is as follows:
- Decomposition of numerous interhalogen compounds involve disproportionation. Bromine fluoride undergoes a disproportionation reaction to form bromine trifluoride and bromine in non-aqueous media:
- The dismutation of superoxide free radical to hydrogen peroxide and oxygen, catalysed in living systems by the enzyme superoxide dismutase:
- In the Cannizzaro reaction, an aldehyde is converted into an alcohol and a carboxylic acid. In the related Tishchenko reaction, the organic redox reaction product is the corresponding ester. In the Kornblum–DeLaMare rearrangement, a peroxide is converted to a ketone and an alcohol.
- The disproportionation of hydrogen peroxide into water and oxygen catalysed by either potassium iodide or the enzyme catalase:
- In the Boudouard reaction, carbon monoxide disproportionates to carbon and carbon dioxide. The reaction is for example used in the HiPco method for producing carbon nanotubes; high-pressure carbon monoxide disproportionates when catalysed on the surface of an iron particle:
- Nitrogen has oxidation state +4 in nitrogen dioxide, but when this compound reacts with water, it forms both nitric acid and nitrous acid, where nitrogen has oxidation states +5 and +3 respectively:
- In hydrazoic acid and sodium azide, each of the 3 nitrogen atoms of these very energetic linear polyatomic species has an oxidation state of −. These unstable and highly toxic compounds will disproportionate in aqueous solution to form gaseous nitrogen and ammonium ions, or ammonia, depending on pH conditions, as it can be conveniently verified by means of the Frost diagram for nitrogen:
- Dithionite undergoes acid hydrolysis to thiosulfate and bisulfite:
- Dithionite also undergoes alkaline hydrolysis to sulfite and sulfide:
- Dithionate is prepared on a larger scale by oxidizing a cooled aqueous solution of sulfur dioxide with manganese dioxide:
Polymer chemistry
in which, Chain— represents the already formed polymer chain, and • indicates a reactive free radical.
Biochemistry
In 1937, Hans Adolf Krebs, who discovered the citric acid cycle bearing his name, confirmed the anaerobic dismutation of pyruvic acid into lactic acid, acetic acid, and CO2, by certain bacteria according to the global reaction:The dismutation of pyruvic acid into other small organic molecules is also a key step in fermentation reactions. Fermentation reactions can also be considered as disproportionation or dismutation biochemical reactions. Indeed, the donor and acceptor of electrons in the redox reactions supplying the chemical energy in these complex biochemical systems are the same organic molecules simultaneously acting as reductant or oxidant.
Another example of biochemical dismutation reaction is the disproportionation of acetaldehyde into ethanol and acetic acid.
In cellular respiration, electrons are transferred from substrate to an electron acceptor; in fermentation, part of the substrate molecule itself accepts the electrons. Fermentation is therefore a type of disproportionation, and does not involve an overall change in oxidation state of the substrate. Most of the fermentative substrates are organic molecules.
Another example involves the disproportionation of inorganic sulfur compounds in certain sulfate-reducing bacteria.
Disproportionation of sulfur intermediates
of sediments are often measured for studying environments in the Earth's past. Disproportionation of sulfur intermediates, being one of the processes affecting sulfur isotopes of sediments, has drawn attention from geoscientists for studying the redox conditions in the oceans in the past.Sulfate-reducing bacteria fractionate sulfur isotopes as they take in sulfate and produce sulfide. Prior to 2010s, it was thought that sulfate reduction could fractionate sulfur isotopes up to 46 ‰ and fractionation larger than 46 ‰ recorded in sediments must be due to disproportionation of sulfur intermediates in the sediment. This view has changed since the 2010s. As substrates for disproportionation are limited by the product of sulfate reduction, the isotopic effect of disproportionation should be less than 16 ‰ in most sedimentary settings.
Disproportionation can be carried out by microorganisms obligated to disproportionation or microorganisms that can carry out sulfate reduction as well. Common substrates for disproportionation include elemental sulfur, thiosulfate and sulfite.
Claus reaction: a comproportionation reaction
The Claus reaction is an example of comproportionation reaction involving hydrogen sulfide and sulfur dioxide to produce elemental sulfur and water as follows:The Claus reaction is one of the chemical reactions involved in the Claus process used for the desulfurization of gases in the oil refinery plants and leading to the formation of solid elemental sulfur, which is easier to store, transport, reuse when possible, and dispose of.