Design of experiments


The design of experiments, also known as experiment design or experimental design, is the design of any task that aims to describe and explain the variation of information under conditions that are hypothesized to reflect the variation. The term is generally associated with experiments in which the design introduces conditions that directly affect the variation, but may also refer to the design of quasi-experiments, in which natural conditions that influence the variation are selected for observation.
In its simplest form, an experiment aims at predicting the outcome by introducing a change of the preconditions, which is represented by one or more independent variables, also referred to as "input variables" or "predictor variables." The change in one or more independent variables is generally hypothesized to result in a change in one or more dependent variables, also referred to as "output variables" or "response variables." The experimental design may also identify control variables that must be held constant to prevent external factors from affecting the results. Experimental design involves not only the selection of suitable independent, dependent, and control variables, but planning the delivery of the experiment under statistically optimal conditions given the constraints of available resources. There are multiple approaches for determining the set of design points to be used in the experiment.
Main concerns in experimental design include the establishment of validity, reliability, and replicability. For example, these concerns can be partially addressed by carefully choosing the independent variable, reducing the risk of measurement error, and ensuring that the documentation of the method is sufficiently detailed. Related concerns include achieving appropriate levels of statistical power and sensitivity.
Correctly designed experiments advance knowledge in the natural and social sciences and engineering, with design of experiments methodology recognised as a key tool in the successful implementation of a Quality by Design framework. Other applications include marketing and policy making. The study of the design of experiments is an important topic in metascience.

History

Statistical experiments, following Charles S. Peirce

A theory of statistical inference was developed by Charles S. Peirce in "Illustrations of the Logic of Science" and "A Theory of Probable Inference", two publications that emphasized the importance of randomization-based inference in statistics.

Randomized experiments

Charles S. Peirce randomly assigned volunteers to a blinded, repeated-measures design to evaluate their ability to discriminate weights.
Peirce's experiment inspired other researchers in psychology and education, which developed a research tradition of randomized experiments in laboratories and specialized textbooks in the 1800s.

Optimal designs for regression models

also contributed the first English-language publication on an optimal design for regression models in 1876. A pioneering optimal design for polynomial regression was suggested by Gergonne in 1815. In 1918, Kirstine Smith published optimal designs for polynomials of degree six.

Sequences of experiments

The use of a sequence of experiments, where the design of each may depend on the results of previous experiments, including the possible decision to stop experimenting, is within the scope of sequential analysis, a field that was pioneered by Abraham Wald in the context of sequential tests of statistical hypotheses. Herman Chernoff wrote an overview of optimal sequential designs, while adaptive designs have been surveyed by S. Zacks. One specific type of sequential design is the "two-armed bandit", generalized to the multi-armed bandit, on which early work was done by Herbert Robbins in 1952.

Fisher's principles

A methodology for designing experiments was proposed by Ronald Fisher, in his innovative books: The Arrangement of Field Experiments and The Design of Experiments. Much of his pioneering work dealt with agricultural applications of statistical methods. As a mundane example, he described how to test the lady tasting tea hypothesis, that a certain lady could distinguish by flavour alone whether the milk or the tea was first placed in the cup. These methods have been broadly adapted in biological, psychological, and agricultural research.
;Comparison
;Randomization
;Statistical replication
;Blocking
;Orthogonality
;Multifactorial experiments

Example

This example of design experiments is attributed to Harold Hotelling, building on examples from Frank Yates. The experiments designed in this example involve combinatorial designs.
Weights of eight objects are measured using a pan balance and set of standard weights. Each weighing measures the weight difference between objects in the left pan and any objects in the right pan by adding calibrated weights to the lighter pan until the balance is in equilibrium. Each measurement has a random error. The average error is zero; the standard deviations of the probability distribution of the errors is the same number σ on different weighings; errors on different weighings are independent. Denote the true weights by
We consider two different experiments with the same amount of measurements:


  1. Weigh each of the eight objects individually.

  2. Do the eight weighings according to the following schedule:
Let yi be the measured difference for i = 1,..., 8. The relationship between the true weights and experimental measurements may be represented with a general linear model, with the design matrix having entries from :
The first design is represented by an identity matrix while the second design is represented by an 8x8 Hadamard matrix,, both examples of weighing matrices.
The weights are typically estimated using the method of least squares. Using a weighing matrix, this is equivalent to inverting on the measurements:
The question of design of experiments is: which experiment is better?
Investigating estimate A vs B for the first weight:
A similar result follows for the remaining weight estimates. Thus, the second experiment gives us 8 times as much precision for the estimate of a single item, despite costing the same number of resources.
Many problems of the design of experiments involve combinatorial designs, as in this example and others.

Avoiding false positives

conclusions, often resulting from the pressure to publish or the author's own confirmation bias, are an inherent hazard in many fields.
Use of double-blind designs can prevent biases potentially leading to false positives in the data collection phase. When a double-blind design is used, participants are randomly assigned to experimental groups but the researcher is unaware of what participants belong to which group. Therefore, the researcher can not affect the participants' response to the intervention.
Experimental designs with undisclosed degrees of freedom are a problem, in that they can lead to conscious or unconscious "p-hacking": trying multiple things until you get the desired result. It typically involves the manipulation – perhaps unconsciously – of the process of statistical analysis and the degrees of freedom until they return a figure below the p<.05 level of statistical significance.
P-hacking can be prevented by preregistering researches, in which researchers have to send their data analysis plan to the journal they wish to publish their paper in before they even start their data collection, so no data manipulation is possible.
Another way to prevent this is taking a double-blind design to the data-analysis phase, making the study triple-blind, where the data are sent to a data-analyst unrelated to the research who scrambles up the data so there is no way to know which participants belong to before they are potentially taken away as outliers.
Clear and complete documentation of the experimental methodology is also important in order to support replication of results.

Discussion topics when setting up an experimental design

An experimental design or randomized clinical trial requires careful consideration of several factors before actually doing the experiment. An experimental design is the laying out of a detailed experimental plan in advance of doing the experiment. Some of the following topics have already been discussed in the principles of experimental design section:
  1. How many factors does the design have, and are the levels of these factors fixed or random?
  2. Are control conditions needed, and what should they be?
  3. Manipulation checks: did the manipulation really work?
  4. What are the background variables?
  5. What is the sample size? How many units must be collected for the experiment to be generalisable and have enough power?
  6. What is the relevance of interactions between factors?
  7. What is the influence of delayed effects of substantive factors on outcomes?
  8. How do response shifts affect self-report measures?
  9. How feasible is repeated administration of the same measurement instruments to the same units at different occasions, with a post-test and follow-up tests?
  10. What about using a proxy pretest?
  11. Are there confounding variables?
  12. Should the client/patient, researcher or even the analyst of the data be blind to conditions?
  13. What is the feasibility of subsequent application of different conditions to the same units?
  14. How many of each control and noise factors should be taken into account?
The independent variable of a study often has many levels or different groups. In a true experiment, researchers can have an experimental group, which is where their intervention testing the hypothesis is implemented, and a control group, which has all the same element as the experimental group, without the interventional element. Thus, when everything else except for one intervention is held constant, researchers can certify with some certainty that this one element is what caused the observed change. In some instances, having a control group is not ethical. This is sometimes solved using two different experimental groups. In some cases, independent variables cannot be manipulated, for example when testing the difference between two groups who have a different disease, or testing the difference between genders. In these cases, a quasi-experimental design may be used.