Data-driven instruction


Data-driven instruction is an educational approach that relies on information to inform teaching and learning. The idea refers to a method teachers use to improve instruction by looking at the information they have about their students. It takes place within the classroom, compared to data-driven decision making. Data-driven instruction works on two levels. One, it provides teachers the ability to be more responsive to students’ needs, and two, it allows students to be in charge of their own learning. Data-driven instruction can be understood through examination of its history, how it is used in the classroom, its attributes, and examples from teachers using this process.

History

Prior to the current emphasis on data and accountability in schools, some school leaders and education researchers focused on standards-based reform in education. From the idea of creating standards comes accountability, the idea that schools should report on their ability to meet the designated standards. Late in the last century and in the early 2000s, an increased emphasis on accountability in public organizations made its way into the realm of education. With the passing of the No Child Left Behind Act in 2001 came laws requiring schools to provide information to the public concerning the quality of education provided to students. To be able to provide such data, states were mandated to create accountability measures and yearly assessments to gauge the effectiveness of schools in meeting those measures. Following NCLB, more recent legislation under the Race to the Top Act further pushed states to use data gathering and reporting to demonstrate school’s ability to meet the demands of the public. Embedded in both NCLB and the Race to the Top Act is an assumption that the collection and use of data can lead to increased student performance.

Attributes

Data in the classroom is any information that is visible during instruction that could be used to inform teaching and learning. Types of data include quantitative and qualitative data, although quantitative data is most often used for data-driven instruction. Examples of quantitative data include test scores, results on a quiz, and levels of performance on a periodic assessment. Examples of qualitative data include field notes, student work/artifacts, interviews, focus groups, digital pictures, video, reflective journals.
Quantitative and qualitative data is generally captured through two forms of assessments: formative and summative. Formative assessment is the information that is revealed and shared during instruction and is actionable by the teacher or student. Paul Black and Dylan Wiliam offer examples of classroom assessment that is formative in nature, including student observations and discussions, understand pupils’ needs and challenges, and looking at student work. Conversely, summative assessments are designed to determine whether or not a student can transfer their learning to new contexts, as well as for accountability purposes. Formative assessment is the use of information made evident during instruction in order to improve student progress and performance. Summative assessments occur after teaching and learning occurred.

Examples

Understanding the differences between quantitative data vs. qualitative data, as well as formative assessment vs. summative assessment that tease out this data can be defined as assessment literacy. Building assessment literacy also includes knowing when to use which type of assessment and the resulting data to use to inform instruction. The purpose of data driven instruction is to use information to guide teaching and learning. Dylan Wiliam offers examples of data driven instruction using formative assessment:
  • Clarifying, sharing, and understanding learning intentions and criteria
  • Eliciting evidence of learners’ achievement
  • Providing feedback that moves learning forward
  • Activating students as instructional resources for one another
  • Activating students as owners of their own learning
Because of the lack of timely feedback regarding the results plus the inability to personalize the approach, summative assessments are not readily used for data driven instruction in the classroom. Instead, a variety of information gleaned from different forms of assessments should be used to make decisions about student progress and performance within data-driven instruction. The use of multiple measures of different forms and at different times to make instructional decisions is referred to as triangulation.

Data-Driven Instructional Systems

Background and origins

Data-Driven Instructional Systems refers to a comprehensive system of structures that school leaders and teachers design in order to incorporate the data into their instructions. Building on organizational and school change literature, Richard Halverson, Jeffrey Grigg, Reid Prichett, and Chris Thomas developed a DDIS framework in an attempt to describe how relevant actors manage school-level internal accountability to external accountability. Specifically, high-stakes external accountability policies such as No Child Left Behind Act was implemented to hold schools accountable for the reported standardized, summative assessment metrics. However, schools already had active internal accountability systems that place high emphasis on an ongoing cycle of instructional improvement based on the use of data including formative assessment results and behavioral information. Therefore, when the high-stakes accountability was implemented, schools naturally go through process of alignment between different types of data different purposes and the corresponding tension. Richard Halverson and his colleagues, employing case study approaches, explore leaders’ effort of coordination and alignment process which occurs between extant “central practices and cultures of schools” and “new accountability pressure” in a pursuit of improving student achievement score.

Key concepts

In their article, Richard Halverson, Jeffrey Grigg, Reid Prichett, and Chris Thomas suggest that the DDIS framework is composed of six organizational functions: data acquisition; data reflection; program alignment; program design; formative feedback; test preparation.

Data Acquisition

Data acquisition includes the data collection, data storage, and data reporting functions. “Data” in DDIS model is broadly conceptualized as any type of information that guides teaching and learning. In practice, schools collect academic data standardized assessment test scores, as well as non-academic data like student demographic information, community survey data, curricula, technological capacity, and behavioral records. In order to store such data, some schools develop their own local collection strategies using low-tech printouts and notebooks, whereas other schools rely on high-tech district storage systems, which provide tremendous amounts of reports. School leaders have discussions around which data needs to be reported and how to report the data in a way that they can use to guide teaching practices.

Data Reflection

In the DDIS model, data reflection refers to collectively making sense of the reported data. District-level data retreats provide key opportunities for the schools within districts to identify the school-level strengths and weaknesses in terms of achievement data. Retreats help districts to develop district-level visions for instruction. In contrast, through local data reflection meetings, teachers have conversations focused on the individual students’ progress by examining each student’s performance on the assessed standards.

Program Alignment

Richard Halverson and his colleagues states that program alignment function refers to “link the relevant content and performance standards with the actual content taught in classroom.” For example, the benchmark assessment results, as “problem-finding tools,” help educators to identify the curricular standards that are not aligned well with the current instructional programs.

Program Design

After identifying the main areas in relation to students learning needs and school goals, leaders and teachers design interventions: faculty-based programs; curriculum-based programs; and student-based programs. In an effort to improve the faculty’s data literacy, educators are provided with a variety of professional development opportunities and coaching focused on professional interaction. In addition, educators modify their curriculum as a whole-classroom approach or develop customized instructional plans taking into account individual students’ needs.

Formative Feedback

Educators interact with each other around the formative feedback on the local interventions implemented across classrooms and programs. Formative feedback systems are made of three main components: intervention, assessment, and actuation. Intervention artifacts here include curriculum materials like textbooks and experiments, or programs such as individualized education programs. The effect of these intervention artifacts can be evaluated through formative assessments, either commercial or self-created, from the perspective that they had brought intended changes to teaching and learning. In the actuation space, educators interpret the assessment results in relation to the initial goals of the intervention, and discuss how to modify the instruction delivery or assessment as measurement tools, which lays groundwork for the new interventions.

Test Preparation

This function is not intended for teachers to “teach to the test.” Rather, it points to the following activities: curriculum-embedded activities, test practice, environmental design, and community outreach. Teachers incorporate the content of standardized assessment into their day-to-day instructions, assist students to practice or be accustomed to test-taking with similar types of tests, and establish a favorable test-taking environment. Further, teachers communicate with parents and the community members on the topics ranging from test implementation to interpreting the test results.