Covalent superconductor
Covalent superconductors are superconducting materials where the atoms are linked by covalent bonds. The first such material was boron-doped synthetic diamond grown by the high-pressure high-temperature method. The discovery had no practical importance, but surprised most scientists as superconductivity had not been observed in covalent semiconductors, including diamond and silicon.
History
The priority of many discoveries in science is vigorously disputed. Another example, after Sumio Iijima has "discovered" carbon nanotubes in 1991, many scientists have pointed out that carbon nanofibers were actually observed decades earlier. The same could be said about superconductivity in covalent semiconductors. Superconductivity in germanium and silicon-germanium was predicted theoretically as early as in the 1960s. Shortly after, superconductivity was experimentally detected in germanium telluride. In 1976, superconductivity with Tc = 3.5 K was observed experimentally in germanium implanted with copper ions; it was experimentally demonstrated that amorphization was essential for the superconductivity, and the superconductivity was assigned to Ge itself, not copper.Diamond
Superconductivity in diamond was achieved through heavy p-type doping by boron such that the individual doping atoms started interacting and formed an "impurity band". The superconductivity was of type-II with the critical temperature Tc = 4 K and critical magnetic field Bc = 4 T. Later, Tc ≈ 11 K has been achieved in homoepitaxial CVD films.Regarding the origin of superconductivity in diamond, three alternative theories were suggested: conventional BCS theory based on phonon-mediated pairing, correlated impurity band theory and spin-flip-driven pairing of holes weakly localized in the vicinity of the Fermi level. Experiments on diamonds enriched with 12C, 13C, 10B or 11B isotopes revealed a clear Tc shift, and its magnitude confirms the BCS mechanism of superconductivity in bulk polycrystalline diamond.
Carbon nanotubes
While there have been reports of intrinsic superconductivity in carbon nanotubes, many other experiments found no evidence of superconductivity, and the validity of these results remains a subject of debate. Note, however, a crucial difference between nanotubes and diamond: Although nanotubes contain covalently bonded carbon atoms, they are closer in properties to graphite than diamond, and can be metallic without doping. Meanwhile, undoped diamond is an insulator.Intercalated graphite
When metal atoms are inserted between the graphite planes, several superconductors are created with the following transition temperatures:| Material | CaC6 | Li3Ca2C6 | YbC6 | SrC6 | KC8 | RbC8 | NaC3 | KC3 | LiC3 | NaC2 | LiC2 |
| Tc | 11.5 | 11.15 | 6.5 | 1.65 | 0.14 | 0.025 | 2.3–3.8 | 3.0 | <0.35 | 5.0 | 1.9 |