Collision
In physics, a collision is any event in which two or more bodies exert forces on each other in a relatively short time. Although the most common use of the word collision refers to incidents in which two or more objects collide with great force, the scientific use of the term implies nothing about the magnitude of the force.
Types of collisions
Collision is short-duration interaction between two bodies or more than two bodies simultaneously causing change in motion of bodies involved due to internal forces acted between them during this. Collisions involve forces. The magnitude of the velocity difference just before impact is called the closing speed. All collisions conserve momentum. What distinguishes different types of collisions is whether they also conserve kinetic energy of the system before and after the collision. Collisions are of two types:- Elastic collision If all of the total kinetic energy is conserved, the collision is said to be perfectly elastic. Such a system is an idealization and cannot occur in reality, due to the second law of thermodynamics.
- Inelastic collision. If most or all of the total kinetic energy is lost, the collision is said to be inelastic; such collisions involve objects coming to a full stop. An example of this is a baseball bat hitting a baseball - the kinetic energy of the bat is transferred to the ball, greatly increasing the ball's velocity. The sound of the bat hitting the ball represents the loss of energy. A "perfectly inelastic" collision is a limiting case of inelastic collision in which the two bodies coalesce after impact. An example of such a collision is a car crash, as cars crumple inward when crashing, rather than bouncing off of each other. This is by design, for the safety of the occupants and bystanders should a crash occur - the frame of the car absorbs the energy of the crash instead.
Collisions in ideal gases approach perfectly elastic collisions, as do scattering interactions of sub-atomic particles which are deflected by the electromagnetic force. Some large-scale interactions like the slingshot type gravitational interactions between satellites and planets are almost perfectly elastic.
Examples
Billiards
Collisions play an important role in cue sports. Because the collisions between billiard balls are nearly elastic, and the balls roll on a surface that produces low rolling friction, their behavior is often used to illustrate Newton's laws of motion. After a zero-friction collision of a moving ball with a stationary one of equal mass, the angle between the directions of the two balls is 90 degrees. This is an important fact that professional billiards players take into account, although it assumes the ball is moving without any impact of friction across the table rather than rolling with friction.Consider an elastic collision in two dimensions of any two masses ma and mb, with respective initial velocities va1 and vb1 where vb1 = 0, and final velocities va2 and vb2.
Conservation of momentum gives mava1 = mava2 + mbvb2.
Conservation of energy for an elastic collision gives ma|va1|2 = ma|va2|2 + mb|vb2|2.
Now consider the case ma = mb: we obtain va1 = va2 + vb2 and |va1|2 = |va2|2 + |vb2|2.
Taking the dot product of each side of the former equation with itself, |va1|2 = va1•va1 = |va2|2 + |vb2|2 + 2va2•vb2. Comparing this with the latter equation gives va2•vb2 = 0, so they are perpendicular unless va2 is the zero vector.
Perfect inelastic collision
In a perfect inelastic collision, i.e., a zero coefficient of restitution, the colliding particles coalesce. Using conservation of momentum:the final velocity is given by
The reduction of total kinetic energy is equal to the total kinetic energy before the collision in a center of momentum frame with respect to the system of two particles, because in such a frame the kinetic energy after the collision is zero. In this frame most of the kinetic energy before the collision is that of the particle with the smaller mass. In another frame, in addition to the reduction of kinetic energy there may be a transfer of kinetic energy from one particle to the other; the fact that this depends on the frame shows how relative this is.
With time reversed we have the situation of two objects pushed away from each other, e.g. shooting a projectile, or a rocket applying thrust.