Scale insect


Scale insects are small insects of the order Hemiptera, suborder Sternorrhyncha. Of dramatically variable appearance and extreme sexual dimorphism, they comprise the infraorder Coccomorpha which is considered a more convenient grouping than the superfamily Coccoidea due to taxonomic uncertainties. Adult females typically have soft bodies and no limbs, and are concealed underneath domed scales, extruding quantities of wax for protection. Some species are hermaphroditic, with a combined ovotestis instead of separate ovaries and testes. Males, in the species where they occur, have legs and sometimes wings, and resemble small flies. Scale insects are herbivores, piercing plant tissues with their mouthparts and remaining in one place, feeding on sap. The excess fluid they imbibe is secreted as honeydew on which sooty mold tends to grow. The insects often have a mutualistic relationship with ants, which feed on the honeydew and protect them from predators. There are about 8,000 described species.
The oldest fossils of the group date to the Late Jurassic, preserved in amber. They were already substantially diversified by the Early Cretaceous suggesting an earlier origin during the Triassic or Jurassic. Their closest relatives are the jumping plant lice, whiteflies, phylloxera bugs and aphids. The majority of female scale insects remain in one place as adults, with newly hatched nymphs, known as "crawlers", being the only mobile life stage, apart from the short-lived males. The reproductive strategies of many species include at least some amount of asexual reproduction by parthenogenesis.
Some scale insects are serious commercial pests, notably the cottony cushion scale on Citrus fruit trees; they are difficult to control as the scale and waxy covering protect them effectively from contact insecticides. Some species are used for biological control of pest plants such as the prickly pear, Opuntia. Others produce commercially valuable substances including carmine and kermes dyes, and shellac lacquer. The two red colour-names crimson and scarlet both derive from the names of Kermes products in other languages.

Description

Scale insects vary dramatically in appearance, from very small organisms that grow beneath wax covers, to shiny pearl-like objects, to animals covered with mealy wax. Adult females are almost always immobile and permanently attached to the plant on which they are feeding. They secrete a waxy coating for defence, making them resemble reptilian or fish scales, and giving them their common name. The key character that sets apart the Coccomorpha from all other Hemiptera is the single segmented tarsus on the legs with only one claw at the tip.
The group is extremely sexually dimorphic; female scale insects, unusual for Hemiptera, retain the immature external morphology even when sexually mature, a condition known as neoteny. Adult females are pear-shaped, elliptical or circular, with no wings, and usually no constriction separating the head from the body. Segmentation of the body is indistinct, but may be indicated by the presence of marginal bristles. Legs are absent in the females of some families, and when present vary from single segment stubs to five-segmented limbs. Female scale insects have no compound eyes, but ocelli are sometimes present in Margarodidae, Ortheziidae and Phenacoleachiidae. The family Beesoniidae lacks antennae, but other families possess antennae with from one to 13 segments. The mouthparts are adapted for piercing and sucking.
Adult males in contrast have the typical head, thorax and abdomen of other insect groups, and are so different from females that pairing them as a species is challenging. They are usually slender insects resembling aphids or small flies. They have antennae with nine or ten segments, compound eyes or simple eyes, and legs with five segments.
Most species have wings, and in some, generations may alternate between being winged and wingless. Adult males do not feed, and die within two or three days of emergence.
In species with winged males, generally only the forewings are fully functional. This is unusual among insects; it most closely resembles the situation in the true flies, the Diptera. However, the Diptera and Hemiptera are not closely related, and do not closely resemble each other in morphology; for example, the tail filaments of the Coccomorpha do not resemble anything in the morphology of flies. The hind wings are reduced, commonly to the point that they can easily be overlooked. In some species the hind wings have hamuli, hooklets, that couple the hind wings to the main wings, as in the Hymenoptera. The vestigial wings are often reduced to pseudo-halteres, club-like appendages, but these are not homologous with the control organs of Diptera that are called halteres, and it is not clear whether they have any substantial control function.
Hermaphroditism is very rare in insects, but several species of Icerya exhibit an unusual form. The adult possesses an ovotestis, consisting of both female and male reproductive tissue, and sperm is transmitted to the young for their future use. The fact that a new population can be founded by a single individual may have contributed to the success of the cottony cushion scale which has spread around the world.

Life cycle

Female scale insects in more advanced families develop from the egg through a first instar stage and a second instar stage before becoming adult. In more primitive families there is an additional instar stage. Males pass through a first and second instar stage, a pre-pupal and a pupal stage before adulthood.
The first instars of most species of scale insects emerge from the egg with functional legs, and are informally called "crawlers". They immediately crawl around in search of a suitable spot to settle down and feed. In some species they delay settling down either until they are starving, or until they have been blown away by wind onto what presumably is another plant, where they may establish a new colony. There are many variations on such themes, such as scale insects that are associated with species of ants that act as herders and carry the young ones to protected sites to feed. In either case, many such species of crawlers, when they moult, lose the use of their legs if they are female, and stay put for life. Only the males retain legs, and in some species wings, and use them in seeking females. To do this they usually walk, as their ability to fly is limited, but they may get carried to new locations by the wind.
Adult females of the families Margarodidae, Ortheziidae and Pseudococcidae are mobile and can move to other parts of the host plant or even adjoining plants, but the mobile period is limited to a short period between moults. Some of these overwinter in crevices in the bark or among plant litter, moving in spring to tender young growth. However, the majority of female scale insects are sedentary as adults. Their dispersal ability depends on how far a crawler can crawl before it needs to shed its skin and start feeding. There are various strategies for dealing with deciduous trees. On these, males often feed on the leaves, usually beside the veins, while females select the twigs. Where there are several generations in the year, there may be a general retreat onto the twigs as fall approaches. On branches, the underside is usually preferred as giving protection against predation and adverse weather. The solenopsis mealybug feeds on the foliage of its host in summer and the roots in winter, and large numbers of scale species feed invisibly, year-round on roots.

Reproduction and the genetics of sex determination

Scale insects show a very wide range of variations in the genetics of sex determination and the modes of reproduction. Besides sexual reproduction, a number of different forms of reproductive systems are employed, including asexual reproduction by parthenogenesis. In some species, sexual and asexual populations are found in different locations, and in general, species with a wide geographic range and a diversity of plant hosts are more likely to be asexual. Large population size is hypothesized to protect an asexual population from becoming extinct, but nevertheless, parthenogenesis is uncommon among scale insects, with the most widespread generalist feeders reproducing sexually, the majority of these being pest species.
Many species have the XX-XO system where the female is diploid and homogametic while the male is heterogametic and missing a sex chromosome. In some Diaspididae and Pseudococcidae, both sexes are produced from fertilized eggs but during development males eliminate the paternal genome and this system called paternal genome elimination is found in nearly 14 scale insect families. This elimination is achieved with several variations. The commonest involved deactivation of the paternal genome and elimination at the time of sperm production in males, this is seen in Pseudococcidae, Kerriidae and some Eriococcidae. In the other variant or Comstockiella system, the somatic cells have the paternal genome untouched. A third variant found in Diaspididae involves the paternal genome being completely removed at an early stage making males haploid both in somatic and germ cells even though they are formed from diploids, i.e., from fertilized eggs. In addition to this there is also true haplodiploidy with females born from fertilized eggs and males from unfertilized eggs. This is seen in the genus Icerya. In Parthenolecanium, males are born from unfertilized eggs but diploidy is briefly restored by fusion of haploid cleave nuclei and then one sex chromosome is lost through heterochromatinization. Females can reproduce parthenogenetically with six different variants based on whether males are entirely absent or not ; the sex of fertilized v. unfertilized eggs; and based on how diploidy is restored in unfertilized eggs. The evolution of these systems are thought to be the result of intra-genomic conflict as well as possibly inter-genomic conflict with endosymbionts under varied selection pressures. The diversity of systems has made scale insects ideal models for research.