Ceramic engineering


Ceramic engineering is the science of creating objects from inorganic, non-metallic materials. This is done using either heat or precipitation reactions on high-purity chemical solutions at lower temperatures. The term includes the purification of raw materials, the study and production of chemical compounds, their formation into components, and the study of their structure, composition, and properties.
Ceramic materials may have a crystalline or partly crystalline structure, with long-range order on atomic scale. Glass-ceramics may have an amorphous or glassy structure. They can be formed from a molten mass that solidifies on cooling or chemically synthesized at low temperatures using methods such as hydrothermal synthesis.
Ceramic materials are used in the fields of materials engineering, electrical engineering, chemical engineering and mechanical engineering. Ceramics are heat resistant, so they can be used for tasks in which materials like metal and polymers are unsuitable.

History

Ceramic engineering, like many sciences, evolved from a different discipline. Materials science and engineering is commonly considered the origins of ceramics engineering.
Abraham Darby first used coke in 1709 in Shropshire, England, to improve the yield of a smelting process. Coke is now widely used to produce carbide ceramics. Potter Josiah Wedgwood opened the first modern ceramics factory in Stoke-on-Trent, England, in 1759. Austrian chemist Carl Josef Bayer, working for the textile industry in Russia, developed a process to separate alumina from bauxite ore in 1888. The Bayer process is still used to purify alumina for the ceramic and aluminum industries. Brothers Pierre and Jacques Curie discovered piezoelectricity in Rochelle salt. Piezoelectricity is one of the key properties of electroceramics.
E.G. Acheson heated a mixture of coke and clay in 1893, and invented carborundum, or synthetic silicon carbide. Henri Moissan also synthesized silicon carbide and tungsten carbide in his electric arc furnace in Paris about the same time as Acheson. Karl Schröter used liquid-phase sintering to bond or "cement" Moissan's tungsten carbide particles with cobalt in 1923 in Germany. Cemented carbide edges greatly increase the durability of hardened steel cutting tools. W.H. Nernst developed cubic-stabilized zirconia in the 1920s in Berlin. This material is used as an oxygen sensor in exhaust systems. The main limitation on the use of ceramics in engineering is brittleness.

Military

The military requirements of World War II encouraged innovation, which created a need for high-performance materials and helped speed the development of ceramic science and engineering. Throughout the 1960s and 1970s, new types of ceramics were developed in response to advances in atomic energy, electronics, communications, and space travel. The discovery of ceramic superconductors in 1986 has spurred research to develop superconducting ceramic parts for electronic devices, electric motors, and transportation equipment.
There is an increasing need in the military sector for high-strength, robust materials which have the capability to transmit light around the visible and mid-infrared regions of the spectrum. These materials are needed for applications requiring transparent armor. Transparent armor is a material or system of materials designed to be optically transparent, yet protect from fragmentation or ballistic impacts. The primary requirement for a transparent armor system is to not only defeat the designated threat but also provide a multi-hit capability with minimized distortion of surrounding areas. Transparent armor windows must also be compatible with night vision equipment. New materials that are thinner, lightweight, and offer better ballistic performance are being sought.
Such solid-state components have found widespread use in the electro-optical field including optical fibers for guided light wave transmission, optical switches, laser amplifiers and lenses, hosts for solid-state lasers and optical window materials for gas lasers, and infrared heat seeking devices for missile guidance systems and IR night vision.

Modern industry

Currently, ceramic engineering applications include the following:
  • Zirconium dioxide ceramics are used in the manufacturing of knives. The blade of the ceramic knife will stay sharp for much longer than that of a steel knife, although it is more brittle and can be snapped by dropping it on a hard surface.
  • Ceramics such as alumina, boron carbide and silicon carbide have been used in bulletproof vests to repel small arms rifle fire. Such plates are known commonly as ballistic plates. Similar material is used to protect cockpits of some military aircraft, because of the low weight of the material.
  • Silicon nitride parts are used in ceramic ball bearings. Their higher hardness means that they are much less susceptible to wear and can offer more than triple lifetimes. They also deform less under load meaning they have less contact with the bearing retainer walls and can roll faster. In very high speed applications, heat from friction during rolling can cause problems for metal bearings; problems which are reduced by the use of ceramics. Ceramics are also more chemically resistant and can be used in wet environments where steel bearings would rust. In many cases their electrically insulating properties may also be valuable in bearings. The major drawback to using ceramics is a significantly higher cost.
  • In the early 1980s, Toyota researched production of an adiabatic ceramic engine which can run at a temperature of over 6000 °F. Ceramic engines do not require a cooling system and hence allow a major weight reduction and therefore greater fuel efficiency. Fuel efficiency of the engine is also higher at high temperature, as shown by Carnot's theorem. In a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent a meltdown of the metallic parts. Despite all of these desirable properties, such engines are not in production because the manufacturing of ceramic parts in the requisite precision and durability is difficult. Imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. Such engines are possible in laboratory settings, but mass-production is not feasible with current technology.
  • Work is being done in developing ceramic parts for gas turbine engines. Currently, even blades made of advanced metal alloys used in the engines' hot section require cooling and careful limiting of operating temperatures. Turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel.
File:Woven bone matrix.jpg|thumb|Collagen fibers of woven bone
  • Recently, there have been advances in ceramics which include bio-ceramics, such as dental implants and synthetic bones. Hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. Orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. Because of this, they are of great interest for gene delivery and tissue engineering scaffolds. Most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. They are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. Work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. Ultimately these ceramic materials may be used as bone replacements or, with the incorporation of protein collagens, synthetic bones.
  • Durable actinide-containing ceramic materials have applications such as in nuclear fuels for burning excess Pu and in chemically-inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. Both use and disposal of radioactive actinides require their immobilization in a durable host material. Nuclear waste long-lived radionuclides such as actinides are immobilized using chemically-durable crystalline materials based on polycrystalline ceramics and large single crystals.
  • Alumina ceramics are utilized in the chemical industry due to their chemical stability and high resistance to corrosion. It is used as acid-resistant pump impellers and pump bodies, ensuring long-lasting performance in transferring aggressive fluids. They are also used in acid-carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. Valves made from alumina ceramics have high durability and resistance to chemical attack, making them useful for controlling the flow of corrosive liquids.

    Glass-ceramics

Glass-ceramic materials share many properties with both glasses and ceramics. Glass-ceramics have an amorphous phase and one or more crystalline phases and are produced by a so-called "controlled crystallization", which is typically avoided in glass manufacturing. Glass-ceramics often contain a crystalline phase which constitutes anywhere from 30% to 90% of its composition by volume, yielding an array of materials with unusual thermomechanical properties.
In the processing of glass-ceramics, molten glass is cooled down gradually before reheating and annealing. In this heat treatment the glass partly crystallizes. In many cases, so-called 'nucleation agents' are added in order to regulate and control the crystallization process. Because there is usually no pressing and sintering, glass-ceramics do not contain the volume fraction of porosity typically present in sintered ceramics.
The term mainly refers to a mix of lithium and aluminosilicates. The most commercially important of these have the distinction of being impervious to thermal shock. Thus, glass-ceramics have become useful for countertop cooking. The negative thermal expansion coefficient of the crystalline ceramic phase can be balanced with the positive TEC of the glassy phase. At a certain point the glass-ceramic has a net TEC near zero. This type of glass-ceramic exhibits excellent mechanical properties and can sustain repeated and quick temperature changes of up to 1000 °C.