Biodiversity loss
Biodiversity loss happens when species disappear completely from Earth or when there is a decrease or disappearance of species in a specific area. Biodiversity loss means that there is a reduction in biological diversity in a given area. The decrease can be temporary or permanent. It is temporary if the damage that led to the loss is reversible in time, for example through ecological restoration. If this is not possible, then the decrease is permanent. The cause of most of the biodiversity loss is, generally speaking, human activities that push the planetary boundaries too far. These activities include habitat destruction and land use intensification. Further problem areas are air and water pollution, over-exploitation, invasive species and climate change.
Many scientists, along with the Global Assessment Report on Biodiversity and Ecosystem Services, say that the main reason for biodiversity loss is a growing human population because this leads to human overpopulation and excessive consumption. Others disagree, saying that loss of habitat is caused mainly by "the growth of commodities for export" and that population has very little to do with overall consumption. More important are wealth disparities between and within countries. In any case, all contemporary biodiversity loss has been attributed to human activities.
Climate change is another threat to global biodiversity. For example, coral reefs—which are biodiversity hotspots—will be lost by the year 2100 if global warming continues at the current rate. Still, it is the general habitat destruction, not climate change, that is currently the bigger driver of biodiversity loss. Invasive species and other disturbances have become more common in forests in the last several decades. These tend to be directly or indirectly connected to climate change and can cause a deterioration of forest ecosystems.
Groups that care about the environment have been working for many years to stop the decrease in biodiversity. Nowadays, many global policies include activities to stop biodiversity loss. For example, the UN Convention on Biological Diversity aims to prevent biodiversity loss and to conserve wilderness areas. However, a 2020 United Nations Environment Programme report found that most of these efforts had failed to meet their goals. For example, of the 20 biodiversity goals laid out by the Aichi Biodiversity Targets in 2010, only six were "partially achieved" by 2020.
This ongoing global extinction is also called the holocene extinction or ''sixth mass extinction.''
Global estimates across all species
The current rate of global biodiversity loss is estimated to be 100 to 1000 times higher than the background extinction rate, faster than at any other time in human history, and is expected to grow in the upcoming years. The fast-growing extinction trends of various animal groups like mammals, birds, reptiles, amphibians, and fish have led scientists to declare a current biodiversity crisis in both land and ocean ecosystems.In 2006, many more species were formally classified as rare or endangered or threatened; moreover, scientists have estimated that millions more species are at risk that have not been formally recognized.
Deforestation also plays a large role in biodiversity loss. More than half of the worlds biodiversity is hosted in tropical rainforest. Regions that are subjected to exponential loss of biodiversity are referred to as biodiversity hotspots. Since 1988 the hotspots increased from 10 to 34. Of the total 34 hotspots currently present, 16 of them are in tropical regions. Researchers have noted in 2006 that only 2.3% of the world is covered with biodiversity loss hotspots, and even though only a small percentage of the world is covered in hotspots, it host a large fraction of vascular plant species.
In 2021, about 28 percent of the 134,400 species assessed using the IUCN Red List criteria are now listed as threatened with extinction—a total of 37,400 species compared to 16,119 threatened species in 2006.
A 2022 study that surveyed more than 3,000 experts found that "global biodiversity loss and its impacts may be greater than previously thought", and estimated that roughly 30% of species "have been globally threatened or driven extinct since the year 1500."
Research published in 2023 found that, out of 70,000 species, about 48% are facing decreasing populations due to human activities, while only 3% are seeing an increase in populations.
Methods to quantify loss
Biologists define biodiversity as the "totality of genes, species and ecosystems of a region". To measure biodiversity loss rates for a particular location, scientists record the species richness and its variation over time in that area. In ecology, local abundance is the relative representation of a species in a particular ecosystem. It is usually measured as the number of individuals found per sample. The ratio of abundance of one species to one or multiple other species living in an ecosystem is called relative species abundance. Both indicators are relevant for computing biodiversity.There are many different biodiversity indexes. These investigate different scales and time spans. Biodiversity has various scales and subcategories.
The question of net loss in confined regions is often a matter of debate.
Observations by type of life
Wildlife in general
An October 2020 analysis by Swiss Re found that one-fifth of all countries are at risk of ecosystem collapse as the result of anthropogenic habitat destruction and increased wildlife loss. If these losses are not reversed, a total ecosystem collapse could ensue.In 2022, the World Wildlife Fund reported an average population decline of 68% between 1970 and 2016 for 4,400 animal species worldwide, encompassing nearly 21,000 monitored populations.
Terrestrial invertebrates
Insects
Earthworms
Scientists have studied loss of earthworms from several long-term agronomic trials. They found that relative biomass losses of minus 50–100% match or exceed those reported for other faunal groups. Thus it is clear that earthworms are similarly depleted in the soils of fields used for intensive agriculture. Earthworms play an important role in ecosystem function, helping with biological processing in soil, water, and even greenhouse gas balancing. There are five reasons for the decline of earthworm diversity: " soil degradation and habitat loss, climate change, excessive nutrient and other forms of contamination load, over-exploitation and unsustainable management of soil, and invasive species". Factors like tillage practices and intensive land use decimate the soil and plant roots that earthworms use to create their biomass. This interferes with carbon and nitrogen cycles.Knowledge of earthworm species diversity is quite limited as not even 50% of them have been described. Sustainable agriculture methods could help prevent earthworm diversity decline, for example reduced tillage. The Secretariat of the Convention on Biological Diversity is trying to take action and promote the restoration and maintenance of the many diverse species of earthworms.
Amphibians
Wild mammals
Birds
Some pesticides, like insecticides, likely play a role in reducing the populations of specific bird species. According to a study funded by BirdLife International, 51 bird species are critically endangered and eight could be classified as extinct or in danger of extinction. Nearly 30% of extinction is due to hunting and trapping for the exotic pet trade. Deforestation, caused by unsustainable logging and agriculture, could be the next extinction driver, because birds lose their habitat and their food.Plants
Trees
While plants are essential for human survival, they have not received the same attention as the conservation of animals. It is estimated that a third of all land plant species are at risk of extinction and 94% have yet to be evaluated in terms of their conservation status. Plants existing at the lowest trophic level require increased conservation to reduce negative impacts at higher trophic levels.In 2022, scientists warned that a third of tree species are threatened with extinction. This will significantly alter the world's ecosystems because their carbon, water and nutrient cycles will be affected. Forest areas are degraded due to common factors such as logging, fire, and firewood harvesting. The GTA has determined that "17,510 tree species are considered threatened with extinction. In addition, there are 142 tree species recorded as Extinct or Extinct in the Wild."
Possible solutions can be found in some silvicultural methods of forest management that promote tree biodiversity, such as selective logging, thinning or crop tree management, and clear cutting and coppicing. Without solutions, secondary forests recovery in species richness can take 50 years to recover the same amount as the primary forest, or 20 years to recover 80% of species richness.
Flowering plants
Freshwater species
s such as swamps, deltas, and rivers make up 1% of earth's surface. They are important because they are home to approximately one third of vertebrate species. Freshwater species are beginning to decline at twice the rate of species that live on land or in the ocean. This rapid loss has already placed 27% of 29,500 species dependent on fresh water on the IUCN Red List.Global populations of freshwater fish are collapsing due to water pollution and overfishing. Migratory fish populations have declined by 76% since 1970, and large "megafish" populations have fallen by 94% with 16 species declared extinct in 2020.
Marine species
encompasses any living organism that resides in the ocean or in estuaries. By 2018, approximately 240,000 marine species had been documented. But many marine species—estimates range between 178,000 and 10 million oceanic species—remain to be described. It is therefore likely that a number of rare species have already disappeared or are on the brink of extinction, unnoticed.Human activities have a strong and detrimental influence on marine biodiversity. The main drivers of marine species extinction are habitat loss, pollution, invasive species, and overexploitation. Greater pressure is placed on marine ecosystems near coastal areas because of the human settlements in those areas.
Overexploitation has resulted in the extinction of over 25 marine species. This includes seabirds, marine mammals, algae, and fish. Examples of extinct marine species include Steller's sea cow and the Caribbean monk seal. Not all extinctions are because of humans. For example, in the 1930s, the eelgrass limpet became extinct in the Atlantic once the Zostera marina seagrass population declined upon exposure to a disease. The Lottia alveus were greatly impacted because the Zostera marina were their sole habitats.