Bioterrorism


Bioterrorism is terrorism involving the intentional release or dissemination of biological agents. These agents include bacteria, viruses, insects, fungi, and/or their toxins, and may be in a naturally occurring or a human-modified form, in much the same way as in biological warfare. Further, modern agribusiness is vulnerable to anti-agricultural attacks by terrorists, and such attacks can seriously damage economy as well as consumer confidence. The latter destructive activity is called agrobioterrorism and is a subtype of agro-terrorism.

Definition

Bioterrorism agents are typically found in nature, but could be mutated or altered to increase their ability to cause disease, make them resistant to current medicines, or to increase their ability to be spread into the environment. Biological agents can be spread through the air, water, or in food. Biological agents are attractive to terrorists because they are extremely difficult to detect and do not cause illness for several hours to several days. Some bioterrorism agents, like the smallpox virus, can be spread from person to person and some, like anthrax, cannot.
Bioterrorism may be favored because biological agents are relatively easy and inexpensive to obtain, can be easily disseminated, and can cause widespread fear and panic beyond the actual physical damage. Military leaders, however, have learned that, as a military asset, bioterrorism has some important limitations; it is difficult to use a bioweapon in a way that only affects the enemy and not friendly forces. A biological weapon is useful to terrorists mainly as a method of creating mass panic and disruption to a state or a country. However, technologists such as Bill Joy have warned of the potential power which genetic engineering might place in the hands of future bio-terrorists.
The use of agents that do not cause harm to humans, but disrupt the economy, have also been discussed. One such pathogen is the foot-and-mouth disease virus, which is capable of causing widespread economic damage and public concern, while having almost no capacity to infect humans.

History

By the time World War I began, attempts to use anthrax were directed at animal populations. This generally proved to be ineffective.
Shortly after the start of World War I, Germany launched a biological sabotage campaign in the United States, Russia, Romania, and France. At that time, Anton Dilger lived in Germany, but in 1915 he was sent to the United States carrying cultures of glanders, a virulent disease of horses and mules. Dilger set up a laboratory in his home in Chevy Chase, Maryland. He used stevedores working the docks in Baltimore to infect horses with glanders while they were waiting to be shipped to Britain. Dilger was under suspicion as being a German agent, but was never arrested. Dilger eventually fled to Madrid, Spain, where he died during the Influenza Pandemic of 1918. In 1916, the Russians arrested a German agent with similar intentions. Germany and its allies infected French cavalry horses and many of Russia's mules and horses on the Eastern Front. These actions hindered artillery and troop movements, as well as supply convoys.

In 1972, police in Chicago arrested two college students, Allen Schwander and Stephen Pera, who had planned to poison the city's water supply with typhoid and other bacteria. Schwander had founded a terrorist group, "R.I.S.E.", while Pera collected and grew cultures from the hospital where he worked. The two men fled to Cuba after being released on bail. Schwander died of natural causes in 1974, while Pera returned to the U.S. in 1975 and was put on probation.
In 1979, anthrax spores killed around 66 people after the spores were unintentionally released from a military lab near Sverdlovsk, Russia. This occurrence of inhalational anthrax had provided a majority of the knowledge scientists understand about clinical anthrax. Soviet officials and physicians claimed the epidemic was produced by the consumption of infected game meat, but further investigation proves the source of infection were the inhaled spores. There is continued discussion about the intentionality of the epidemic and some speculate it was calculated by the Soviet government.
In 1980, the World Health Organization announced the eradication of smallpox, a highly contagious and incurable disease. Although the disease has been eliminated in the wild, frozen stocks of smallpox virus are still maintained by the governments of the United States and Russia. Disastrous consequences are feared if rogue politicians or terrorists were to get hold of the smallpox strains. Since vaccination programs are now terminated, the world population is more susceptible to smallpox than ever before.
In Oregon in 1984, followers of the Bhagwan Shree Rajneesh attempted to control a local election by incapacitating the local population. They infected salad bars in 10 restaurants, produce in grocery stores, doorknobs, and other public domains with Salmonella typhimurium bacteria in the city of The Dalles, Oregon. The attack infected 751 people with severe food poisoning and hospitalized 45 of them. There were no fatalities. This incident was the first known bioterrorist attack in the United States in the 20th century. It was also the single largest bioterrorism attack on U.S. soil.

In June 1993, the religious group Aum Shinrikyo released anthrax in Tokyo. Eyewitnesses reported a foul odor. The attack was a failure, because it did not infect a single person. The reason for this is due to the fact that the group used the vaccine strain of the bacterium. The spores which were recovered from the site of the attack showed that they were identical to an anthrax vaccine strain that was given to animals at the time. These vaccine strains are missing the genes that cause a symptomatic response.
In September and October 2001, several cases of anthrax broke out in the United States, apparently deliberately caused. Letters laced with infectious anthrax were concurrently delivered to news media offices and the U.S. Congress. The letters killed five people.

Scenarios

There are multiple considerable scenarios, how terrorists might employ biological agents. In 2000, tests conducted by various US agencies showed that indoor attacks in densely populated spaces are much more serious than outdoor attacks. Such enclosed spaces are large buildings, trains, indoor arenas, theaters, malls, tunnels and similar. Contra-measures against such scenarios are building architecture and ventilation systems engineering. In 1993, sewage was spilled out into a river, subsequently drawn into the water system and affected 400,000 people in Milwaukee, Wisconsin. The disease-causing organism was cryptosporidium parvum. This man-made disaster can be a template for a terrorist scenario. Nevertheless, terrorist scenarios are considered more likely near the points of delivery than at the water sources before the water treatment. Release of biological agents is more likely for a single building or a neighborhood. Counter-measures against this scenario include the further limitation of access to the water supply systems, tunnels, and infrastructure. Agricultural crop-duster flights might be misused as delivery devices for biological agents as well. Counter-measures against this scenario are background checks of employees of crop-dusting companies and surveillance procedures.
In the most common hoax scenario, no biological agents are employed. For instance, an envelope with powder in it that says, “You've just been exposed to anthrax.” Such hoaxes have been shown to have a large psychological impact on the population.
Anti-agriculture attacks are considered to require relatively little expertise and technology. Biological agents that attack livestock, fish, vegetation, and crops are mostly not contagious to humans and are therefore easier for attackers to handle. Even a few cases of infection can disrupt a country's agricultural production and exports for months, as evidenced by FMD outbreaks.

Types of agents

Under current United States law, bio-agents which have been declared by the U.S. Department of Health and Human Services or the U.S. Department of Agriculture to have the "potential to pose a severe threat to public health and safety" are officially defined as "select agents." The CDC categorizes these agents and administers the Select Agent Program, which regulates the laboratories which may possess, use, or transfer select agents within the United States. As with US attempts to categorize harmful recreational drugs, designer viruses are not yet categorized and avian H5N1 has been shown to achieve high mortality and human-communication in a laboratory setting.

Category A

These high-priority agents pose a risk to national security, can be easily transmitted and disseminated, result in high mortality, have potential major public health impact, may cause public panic, or require special action for public health preparedness.
  • SARS and COVID-19, though not as lethal as other diseases, was concerning to scientists and policymakers for its social and economic disruption potential. After the global containment of the SARS pandemic, the United States President George W. Bush stated "...A global influenza pandemic that infects millions and lasts from one to three years could be far worse."
  • Tularemia or "rabbit fever": Tularemia has a very low fatality rate if treated, but can severely incapacitate. The disease is caused by the Francisella tularensis bacterium, and can be contracted through contact with fur, inhalation, ingestion of contaminated water or insect bites. Francisella tularensis is very infectious. A small number of organisms can cause disease. If F. tularensis were used as a weapon, the bacteria would likely be made airborne for exposure by inhalation. People who inhale an infectious aerosol would generally experience severe respiratory illness, including life-threatening pneumonia and systemic infection, if they are not treated. The bacteria that cause tularemia occur widely in nature and could be isolated and grown in quantity in a laboratory, although manufacturing an effective aerosol weapon would require considerable sophistication.
  • Anthrax: Anthrax is a non-contagious disease caused by the spore-forming bacterium Bacillus anthracis. The ability of Anthrax to produce within small spores, or bacilli bacterium, makes it readily permeable to porous skin and can cause abrupt symptoms within 24 hours of exposure. The dispersal of this pathogen among densely populated areas is said to carry less than one percent mortality rate, for cutaneous exposure, to a ninety percent or higher mortality for untreated inhalational infections. An anthrax vaccine does exist but requires many injections for stable use. When discovered early, anthrax can be cured by administering antibiotics. Its first modern incidence in biological warfare were when Scandinavian "freedom fighters" supplied by the German General Staff used anthrax with unknown results against the Imperial Russian Army in Finland in 1916. In 1993, the Aum Shinrikyo used anthrax in an unsuccessful attempt in Tokyo with zero fatalities. Anthrax was used in a series of attacks by a microbiologist at the US Army Medical Research Institute of Infectious Diseases on the offices of several United States senators in late 2001. The anthrax was in a powder form and it was delivered by the mail. This bioterrorist attack inevitably prompted seven cases of cutaneous anthrax and eleven cases of inhalation anthrax, with five leading to deaths. Additionally, an estimated 10 to 26 cases had prevented fatality through treatment supplied to over 30,000 individuals. Anthrax is one of the few biological agents that federal employees have been vaccinated for. In the US an anthrax vaccine, Anthrax Vaccine Adsorbed exists and requires five injections for stable use. Other anthrax vaccines also exist. The strain used in the 2001 anthrax attacks was identical to the strain used by the USAMRIID.
  • Smallpox: Smallpox is a highly contagious virus. It is transmitted easily through the atmosphere and has a high mortality rate. Smallpox was eradicated in the world in the 1970s, thanks to a worldwide vaccination program. However, some virus samples are still available in Russian and American laboratories. Some believe that after the collapse of the Soviet Union, cultures of smallpox have become available in other countries. Although people born pre-1970 will have been vaccinated for smallpox under the WHO program, the effectiveness of vaccination is limited since the vaccine provides high level of immunity for only 3 to 5 years. Revaccination's protection lasts longer. As a biological weapon smallpox is dangerous because of the highly contagious nature of both the infected and their pox. Also, the infrequency with which vaccines are administered among the general population since the eradication of the disease would leave most people unprotected in the event of an outbreak. Smallpox occurs only in humans, and has no external hosts or vectors.
  • Botulinum toxin: The neurotoxin Botulinum is the deadliest toxin known to man, and is produced by the bacterium Clostridium botulinum. Botulism causes death by respiratory failure and paralysis. Furthermore, the toxin is readily available worldwide due to its cosmetic applications in injections.
  • Bubonic plague: Plague is a disease caused by the Yersinia pestis bacterium. Rodents are the normal host of plague, and the disease is transmitted to humans by flea bites and occasionally by aerosol in the form of pneumonic plague. The disease has a history of use in biological warfare dating back many centuries, and is considered a threat due to its ease of culture and ability to remain in circulation among local rodents for a long period of time. The weaponized threat comes mainly in the form of pneumonic plague It was the disease that caused the Black Death in medieval Europe.
  • Viral hemorrhagic fevers: This includes hemorrhagic fevers caused by members of the family Filoviridae, and by the family Arenaviridae. Ebola virus disease, in particular, has caused high fatality rates ranging from 25 to 90% with a 50% average. No cure currently exists, although vaccines are in development. The Soviet Union investigated the use of filoviruses for biological warfare, and the Aum Shinrikyo group unsuccessfully attempted to obtain cultures of Ebola virus. Death from Ebola virus disease is commonly due to multiple organ failure and hypovolemic shock. Marburg virus was first discovered in Marburg, Germany. No treatments currently exist aside from supportive care. The arenaviruses have a somewhat reduced case-fatality rate compared to disease caused by filoviruses, but are more widely distributed, chiefly in central Africa and South America.