Beta-lactamase


Beta-lactamases are enzymes produced by bacteria that provide multi-resistance to beta-lactam antibiotics such as penicillins, cephalosporins, cephamycins, monobactams and carbapenems, although carbapenems are relatively resistant to beta-lactamase. Beta-lactamase provides antibiotic resistance by breaking the antibiotics' structure. These antibiotics all have a common element in their molecular structure: a four-atom ring known as a beta-lactam ring. Through hydrolysis, the enzyme lactamase breaks the β-lactam ring open, deactivating the molecule's antibacterial properties.
Beta-lactamases produced by gram-negative bacteria are usually secreted, especially when antibiotics are present in the environment.

Structure

The structure of a Streptomyces serine β-lactamase is given by. The alpha-beta fold resembles that of a DD-transpeptidase, from which the enzyme is thought to have evolved. β-lactam antibiotics bind to DD-transpeptidases to inhibit bacterial cell wall biosynthesis. Serine β-lactamases are grouped by sequence similarity into types A, C, and D.
The other type of beta-lactamase is of the metallo type. Metallo-beta-lactamases need metal ion on their active site for their catalytic activities. The structure of the New Delhi metallo-beta-lactamase 1 is given by. It resembles a RNase Z, from which it is thought to have evolved.

Mechanism of action

The two types of beta-lactamases work on the basis of the two basic mechanisms of opening the β-lactam ring.
The SBLs are similar in structure and mechanistically to the β-lactam target penicillin-binding proteins which are necessary for cell wall building and modifying. SBLs and PBPs both covalently change an active site serine residue. The difference between the PBPs and SBLs is that the latter generates free enzyme and inactive antibiotic by the very quick hydrolysis of the acyl-enzyme intermediate.
The MBLs use the Zn2+ ions to activate a binding site water molecule for the hydrolysis of the β-lactam ring. Zinc chelators have recently been investigated as metallo-β-lactamase inhibitors, as they are often able to restore carbapenem susceptibility.

Penicillinase

Penicillinase is a specific type of β-lactamase, showing specificity for penicillins, again by hydrolysing the β-lactam ring. Molecular weights of the various penicillinases tend to cluster near 50 kilodaltons.
Penicillinase was the first β-lactamase to be identified. It was first isolated by Abraham and Chain in 1940 from E. coli even before penicillin entered clinical use, but penicillinase production quickly spread to bacteria that previously did not produce it or produced it only rarely. Penicillinase-resistant beta-lactams such as methicillin were developed, but there is now widespread resistance to even these.

Resistance in gram-negative bacteria

Among gram-negative bacteria, the emergence of resistance to extended-spectrum cephalosporins has been a major concern. It appeared initially in a limited number of bacterial species that could mutate to hyperproduce their chromosomal class C β-lactamase. A few years later, resistance appeared in bacterial species not naturally producing AmpC enzymes due to the production of TEM- or SHV-type ESBLs. Characteristically, such resistance has included oxyimino-, but not 7-alpha-methoxy-cephalosporins ; has been blocked by inhibitors such as clavulanate, sulbactam or tazobactam and did not involve carbapenems and temocillin. Chromosomal-mediated AmpC β-lactamases represent a new threat, since they confer resistance to 7-alpha-methoxy-cephalosporins such as cefoxitin or cefotetan but are not affected by commercially available β-lactamase inhibitors, and can, in strains with loss of outer membrane porins, provide resistance to carbapenems.

Extended-spectrum beta-lactamase (ESBL)

Members of this family commonly express β-lactamases which confer resistance to expanded-spectrum cephalosporins. In the mid-1980s, this new group of enzymes, the extended-spectrum β-lactamases, was detected. The prevalence of ESBL-producing bacteria have been gradually increasing in acute care hospitals. The prevalence in the general population varies between countries, e.g. approximately 6% in Germany and France, 13% in Saudi Arabia, and 63% in Egypt.
ESBLs are beta-lactamases that hydrolyze extended-spectrum cephalosporins with an oxyimino side chain. These cephalosporins include cefotaxime, ceftriaxone, and ceftazidime, as well as the oxyimino-monobactam aztreonam. Thus, ESBLs confer multi-resistance to these antibiotics and related oxyimino-beta lactams. In typical circumstances, they derive from genes for TEM-1, TEM-2, or SHV-1 by mutations that alter the amino acid configuration around the active site of these β-lactamases. A broader set of β-lactam antibiotics are susceptible to hydrolysis by these enzymes. An increasing number of ESBLs not of TEM or SHV lineage have recently been described. The ESBLs are frequently plasmid encoded. Plasmids responsible for ESBL production frequently carry genes encoding resistance to other drug classes. Therefore, antibiotic options in the treatment of ESBL-producing organisms are extremely limited. Carbapenems are the treatment of choice for serious infections due to ESBL-producing organisms, yet carbapenem-resistant isolates have recently been reported. ESBL-producing organisms may appear susceptible to some extended-spectrum cephalosporins. However, treatment with such antibiotics has been associated with high failure rates.

Types

TEM beta-lactamases (class A)

TEM-1 is the most commonly encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the extended-spectrum beta lactamase phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to β-lactamase inhibitors, such as clavulanic acid. Single amino acid substitutions at positions 104, 164, 238, and 240 produce the ESBL phenotype, but ESBLs with the broadest spectrum usually have more than a single amino acid substitution. Based upon different combinations of changes, currently 140 TEM-type enzymes have been described. TEM-10, TEM-12, and TEM-26 are among the most common in the United States. The term TEM comes from the name of the Athenian patient from which the isolate was recovered in 1963.

SHV beta-lactamases (class A)

SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known. SHV-5 and SHV-12 are among the most common. The initials stand for "sulfhydryl reagent variable".

CTX-M beta-lactamases (class A)

These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates. Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. More than 172 CTX-M enzymes are currently known. Despite their name, a few are more active on ceftazidime than cefotaxime. They are widely described among species of Enterobacteriaceae, mainly E. coli and K. pneumoniae. Detected in the 1980s they have since the early 2000s spread and are the now the predominant ESBL type in the world. They are generally clustred into five groups based on sequencing homologies; CTX-M-1, CTX-M-2, CTX-M-8, CTX-M-9 and CTX-M-25. CTX-M-15 is the most prevalent CTX-M-gene. An example of beta-lactamase CTX-M-15, along with ISEcp1, has been found to have transposed onto the chromosome of Klebsiella pneumoniae ATCC BAA-2146. The initials stand for "Cefotaxime-Munich".

OXA beta-lactamases (class D)

OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. While most ESBLs have been found in E. coli, K. pneumoniae, and other Enterobacteriaceae, the OXA-type ESBLs have been found mainly in P. aeruginosa. OXA-type ESBLs have been found mainly in Pseudomonas aeruginosa isolates from Turkey and France. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime.