Baire function
In mathematics, Baire functions are functions obtained from continuous functions by transfinite iteration of the operation of forming pointwise limits of sequences of functions. They were introduced by René-Louis Baire in 1899. A Baire set is a set whose characteristic function is a Baire function.
Classification of Baire functions
Baire functions of class α, for any countable ordinal number α, form a vector space of real-valued functions defined on a topological space, as follows.- The Baire class 0 functions are the continuous functions.
- The Baire class 1 functions are those functions which are the pointwise limit of a sequence of Baire class 0 functions.
- In general, the Baire class α functions are all functions which are the pointwise limit of a sequence of functions of Baire class less than α.
Henri Lebesgue proved that each Baire class of a countable ordinal number contains functions not in any smaller class, and that there exist functions which are not in any Baire class.
Baire class 1
Examples:- The derivative of any differentiable function is of class 1. An example of a differentiable function whose derivative is not continuous is the function equal to when x ≠ 0, and 0 when x = 0. An infinite sum of similar functions can even give a differentiable function whose derivative is discontinuous on a dense set. However, it necessarily has points of continuity, which follows easily from The Baire Characterisation Theorem.
- The characteristic function of the set of integers, which equals 1 if x is an integer and 0 otherwise.
- Thomae's function, which is 0 for irrational x and 1/q for a rational number p/''q.
- The characteristic function of the Cantor set, which equals 1 if x'' is in the Cantor set and 0 otherwise. This function is 0 for an uncountable set of x values, and 1 for an uncountable set. It is discontinuous wherever it equals 1 and continuous wherever it equals 0. It is approximated by the continuous functions, where is the distance of x from the nearest point in the Cantor set.
By another theorem of Baire, for every Baire-1 function the points of continuity are a comeager Gδ set.