Lockheed F-104 Starfighter
The Lockheed F-104 Starfighter is an American single-engine, supersonic interceptor. Created as a day fighter by Lockheed as one of the "Century Series" of fighter aircraft for the United States Air Force, it was developed into an all-weather multirole aircraft in the early 1960s and extensively deployed as a fighter-bomber during the Cold War. It was also produced under license by other nations and saw widespread service outside the United States.
After interviews with Korean War fighter pilots in 1951, Lockheed lead designer Kelly Johnson chose to buck the trend of ever-larger and more complex fighters to produce a simple, lightweight aircraft with maximum altitude and climb performance. On 4 March 1954, the Lockheed XF-104 took to the skies for the first time, and on 26 February 1958, the production fighter was activated by the USAF. Just a few months later, it was pressed into action during the Second Taiwan Strait Crisis to deter the use of Chinese MiG-15 and MiG-17 fighters. Problems with the General Electric J79 engine and a preference for fighters with longer ranges and heavier payloads initially limited its service with the USAF, though it was reactivated for service during the Berlin Crisis of 1961 and the Vietnam War, when it flew more than 5,000 combat sorties.
Fifteen NATO and allied air forces eventually flew the Starfighter, many for longer than the USAF. In October 1958, West Germany chose the F-104 as its primary fighter aircraft. Canada soon followed, then the Netherlands, Belgium, Japan, and Italy. The European nations formed a construction consortium that was the largest international manufacturing program in history to that point. In 1975, it was revealed that Lockheed had bribed many foreign military and political figures to secure purchase contracts.
The Starfighter had a poor safety record, especially in German Air Force service. The Germans lost 292 of 916 aircraft and 116 pilots from 1961 to 1989, leading the German public to dub it Witwenmacher. The final production version, the F-104S, was an all-weather interceptor built by Aeritalia for the Italian Air Force. It was retired from military service in 2004. As of 2025, several F-104s remain in civilian operation with Florida-based Starfighters Inc.
The Starfighter featured a radical design, with thin, stubby wings attached farther back on the fuselage than most contemporary aircraft. The wing provided excellent supersonic and high-speed, low-altitude performance, but also poor turning capability and high landing speeds. It was the first production aircraft to achieve Mach 2, and the first aircraft to reach an altitude of after taking off under its own power. The Starfighter established world records for airspeed, altitude, and time-to-climb in 1958, becoming the first aircraft to hold all three simultaneously. It was also the first aircraft to be equipped with the M61 Vulcan autocannon.
Development
Background and early development
Clarence L. "Kelly" Johnson, vice president of engineering and research at Lockheed's Skunk Works, visited USAF air bases across South Korea in November 1951 to speak with fighter pilots about what they wanted and needed in a fighter aircraft. At the time, the American pilots were confronting the MiG-15 with North American F-86 Sabres, and many felt that the MiGs were superior to the larger and more complex American fighters. The pilots requested a small and simple aircraft with excellent performance, especially high-speed and high-altitude capabilities. Johnson started the design of such an aircraft upon his return to the United States. In March 1952, his team was assembled; they studied over 100 aircraft configurations, ranging from small designs at just, to large ones up to. To achieve the desired performance, Lockheed chose a small and simple aircraft, weighing in at with a single powerful engine. The engine chosen was the new General Electric J79 turbojet, an engine of dramatically improved performance in comparison with contemporary designs. The small design powered by a single J79, issued Temporary Design Number L-246, remained essentially identical to the prototype Starfighter as eventually delivered. Lockheed designated the prototype Model 083.Johnson presented his new fighter concept to the United States Air Force on 5 November 1952, and they were interested enough to create a general operational requirement for a lightweight fighter to supplement and ultimately replace the yet-to-fly North American F-100. Three additional companies were named finalists for the requirement: Republic Aviation with the AP-55, an improved version of its prototype XF-91 Thunderceptor; North American Aviation with the NA-212, which eventually evolved into the F-107; and Northrop Corporation with the N-102 Fang, another J79-powered entry. Although all three finalists' proposals were strong, Lockheed had what proved to be an insurmountable head start, and was granted a development contract on 1953 for two prototypes; these were given the designation "XF-104".
Work progressed quickly, with a mock-up ready for inspection at the end of April, and work starting on two prototypes soon after. Meanwhile, the J79 engine was not ready. Both prototypes were instead built to use the Wright J65 engine, a license-constructed version of the Armstrong Siddeley Sapphire. The first prototype was completed at Lockheed's Burbank facility by early 1954 and first flew on 4 March at Edwards AFB. The total time from contract to first flight was less than one year.
Though development of the F-104 was never a secret, only a vague description of the aircraft was given when the USAF first revealed its existence. No photographs of the aircraft were released to the public until 1956, even though the XF-104 first flew in 1954. At the April 1956 public unveiling of the, the engine inlets were obscured with metal covers. Visible weapons, including the M61 Vulcan cannon, were also hidden. Despite the secrecy, an artist's rendering of the yet-unseen F-104 appeared in the September 1954 edition of Popular Mechanics that was very close to the actual design.
The prototype made a hop into the air during taxi trials on 28 February 1954 and flew about off the ground for a short distance, but this was not counted as a first flight. On 4 March, Lockheed test pilot Tony LeVier flew the XF-104 for its first official flight. He was airborne for only, much shorter than planned, due to landing gear retraction problems. The second prototype was destroyed several weeks later during gun-firing trials when the hatch to the ejector seat blew out, depressurizing the cockpit and causing the pilot to eject in the mistaken belief that a cannon mishap had crippled the aircraft. Nevertheless, on 1 November 1955 the remaining XF-104 was accepted by the USAF.
Further development
Based on the testing and evaluation of the XF-104, the next variant, the YF-104A, was lengthened and fitted with a General Electric J79 engine, modified landing gear, and modified air intakes. The YF-104A and subsequent models were longer than the XF-104 to accommodate the larger GE J79 engine. The YF-104 initially flew with the GE XJ79-GE-3 turbojet which generated 9,300 pounds of dry thrust, which was later replaced by the J79-GE-3A with an improved afterburner.Seventeen YF-104As were ordered by the USAF on 30 March 1955 for further flight testing. The first of them flew on 17 February 1956 and, with the other 16 trial aircraft, was soon carrying out aircraft and equipment evaluation and tests. On 1 May 1957 one of the prototypes was destroyed when the ailerons malfunctioned, resulting in the aircraft tumbling wildly. The pilot ejected safely. Lockheed made several improvements to the YF-104A throughout this testing period, including strengthening the airframe, adding a ventral fin to improve directional stability at supersonic speed, and installing a boundary layer control system to reduce landing speed.
Problems were encountered with the J79 afterburner; further delays were caused by the need to add AIM-9 Sidewinder air-to-air missiles. On 28 January 1958, the first production F-104A to enter service was delivered to the 83rd Fighter Interceptor Wing.
Redesign for NATO
In response to a 1957 German Air Staff Paper asking for a single aircraft to fulfill its fighter, fighter-bomber, and reconnaissance mission requirements, Lockheed redesigned the entire airframe, including 96 new forgings, additional skin panels, and reinforced landing gear with larger tires and improved brakes. The proposed F-104G "Super Starfighter" featured a more powerful J79-11A engine, a larger tail with powered rudder, improved blown flaps with a mode for improved maneuverability, electric de-icing equipment for the air intake inlets, and a larger drogue chute. Avionics were improved as well, primarily with the Autonetics F15A NASARR multi-mode radar and the LN-3 inertial navigation system by Litton Industries, the first such system to be placed into operational service. Altogether, these changes increased the amount of external weapons that could be carried to, and also allowed the aircraft to fulfill the NATO requirement of carrying a "special store" under the fuselage.Belgium, the Netherlands, and Italy selected the F-104 soon after as well, and the four European nations set up four production groups to jointly manufacture the F-104G under license. Arbeitsgemeinschaft South consisted of Messerschmitt, Heinkel, Dornier, and Siebel; ARGE North comprised Hamburger Flugzeugbau, Focke-Wulf, and Weserflug in Germany, as well as Fokker and Aviolanda in the Netherlands; the West Group was made of SABCA and Avions Fairey in Belgium; and the Italian Group was formed of Fiat, Macchi, Piaggio, SACA, and SIAI-Marchetti. The four groups were contracted to manufacture 210, 350, 189, and 200 F-104G aircraft, respectively. In addition, 1,225 J79 turbojets were also produced under license by BMW in Germany, Fabrique Nationale in Belgium, and Alfa Romeo in Italy. Canada, who had also chosen the Starfighter to fulfill its NATO obligations, delivered 121 sets of wings, aft fuselages, and tail assemblies built by Canadair to Europe while it constructed 200 CF-104s with Orenda-built engines for the Royal Canadian Air Force. Later the two would also build an additional 110 MAP-funded F-104Gs destined for Europe. Lockheed for its part built 191 two-seat trainers for both Europe and Canada, as well as supplying spares and technical support.
The multinational consortium formed a central coordination office named NASMO in Koblenz, Germany, which succeeded in achieving a high level of standardization and cooperation. This was evidenced by an F-104G being assembled in April 1963 at Erding Air Base in Germany consisting of components constructed in all four European partner countries. However, this central coordination resulted in long delays in implementing needed modifications and upgrades. Some of the modifications that were proposed during this time, mainly from the Joint Test Force at Edwards AFB in California, were the installation of an arrester hook, a standby attitude indicator, and the emergency engine nozzle closure system.
In all, 2,578 F-104s were produced by Lockheed and under license by various foreign manufacturers.