Automotive air conditioning


Automotive air conditioning systems use air conditioning to cool the air in a vehicle.

History

A company in New York City in the United States first offered the installation of air conditioning for cars in 1933. Most of their customers operated limousines and luxury cars.
On 7 October 1935, Ralph Peo of Houde Engineering, Buffalo, New York, applied for a patent for an "Air Cooling Unit for Automobiles"., was granted on 16 November 1937.
In 1939, Packard became the first automobile manufacturer to offer an optional air conditioning unit in its 1940 model year cars. These bulky units were manufactured by Bishop and Babcock, of Cleveland, Ohio and were ordered on approximately 2,000 cars. The "Bishop and Babcock Weather Conditioner" also incorporated a heater. Cars ordered with this option were shipped from Packard's East Grand Boulevard facility to the B&B factory where the installation was performed. Once complete, the car was shipped to a local dealer for delivery to customers.
Packard warranted and supported this conversion. However, it was not commercially successful because:
  • The main evaporator and blower system took up half of the trunk space.
  • It was superseded by more efficient systems in the post-war years.
  • It had no temperature thermostat or shut-off mechanism other than switching the blower off.
  • The several feet of plumbing going back and forth between the engine compartment and trunk proved unreliable in service.
  • The price, at $274, was unaffordable to most people in depression/pre-war America.
The option was discontinued after 1941.

Chrysler Airtemp

The 1953 Chrysler Imperial was one of the first production cars in twelve years to offer modern automobile air conditioning as an option, following tentative experiments by Packard in 1940 and Cadillac in 1941. Walter Chrysler had seen to the invention of Airtemp air conditioning in the 1930s for the Chrysler Building, and had offered it on cars in 1941-42, and again in 1951-52.
The Airtemp was more advanced than rival automobile air conditioners by 1953. It was operated by a single switch on the dashboard marked with low, medium, and high positions. As the highest capacity unit available at that time, the system was capable of quickly cooling the passenger compartment and also reducing humidity, dust, pollen, and tobacco smoke. The system drew in more outside air than contemporary systems; thus, reducing the staleness associated with automotive air conditioning at the time. Instead of plastic tubes mounted on the rear window package shelf as on GM cars, small ducts directed cool air toward the ceiling of the car where it filtered down around the passengers instead of blowing directly on them, a feature that modern cars have lost.
Cadillac, Buick, and Oldsmobile added air conditioning as an option on some of their models for the 1953 model year. All of these Frigidaire systems used separate engine and trunk mounted components.

Nash integrated system

In 1954, the Nash Ambassador was the first American automobile to have a front-end, fully integrated heating, ventilating, and air-conditioning system. The Nash-Kelvinator corporation used its experience in refrigeration to introduce the automobile industry's first compact and affordable, single-unit heating and air conditioning system optional for its Nash models. This was the first mass market system with controls on the dash and an electric clutch. This system was also compact and serviceable with all of its components installed under the hood or in the cowl area.
Combining heating, cooling, and ventilating, the new air conditioning system for the Nash cars was called the "All-Weather Eye". This followed the marketing name of "Weather Eye" for Nash's fresh-air automotive heating and ventilating system that was first used in 1938. With a single thermostatic control, the Nash passenger compartment air cooling option was "a good and remarkably inexpensive" system. The system had cold air for passengers enter through dash-mounted vents. Nash's exclusive "remarkable advance" was not only the "sophisticated" unified system, but also its $345 price that beat all other systems.
Most competing systems used a separate heating system and an engine-mounted compressor, driven by the engine crankshaft via a belt, with an evaporator in the car's trunk to deliver cold air through the rear parcel shelf and overhead vents. General Motors offered a front-mounted air conditioning system made by its Harrison Division on 1954 Pontiacs with a straight-eight engine. It was very expensive and not a fully integrated system with separate controls and ducts for air distribution. The heater core continued to be a separate "Venti-Seat" or under the front seat system with its own controls. The unified alternative layout pioneered by Nash "became established practice and continues to form the basis of the modern and more sophisticated automatic climate control systems."

Growth in application

The innovation was adopted quickly and by 1960 about 20% of all cars in the U.S. had air-conditioning, with the percentage increasing to 80% in the warm areas of the Southwest.
Cadillac introduced the industry's first Comfort Control which was a completely automatic heating and cooling system set by dial thermostat for the 1964 model year.
American Motors Corporation made air conditioning standard equipment on all AMC Ambassadors starting with the 1968 model year, an innovation in the mass market with the base prices of the cars starting at $2,671. At the time, air conditioning was standard only on Cadillac limousines and Rolls-Royces.
By 1969, 54% of domestic automobiles were equipped with air conditioning, a feature needed not only for passenger comfort, but also to increase the car's resale value.
Air-conditioning for automobiles came into widespread use in the United States starting from the 1980s. Adoption was slower elsewhere; in 1990 less than eight percent of cars sold in Europe were thus equipped.

Evaporative cooling

A car cooler is an automobile evaporative cooler, sometimes referred to as a swamp cooler. Most are aftermarket relatively inexpensive accessories consisting of an external window-mounted metal cylinder without moving parts, but internal under the dashboard or center floor units with an electric fan are available. It was an early type of automobile air conditioner and is not used in modern cars relying on refrigerative systems to cool the interior.
To cool the air it used latent heat. Water inside the device evaporates and in the process transfers heat from the surrounding air. The cool moisture-laden air is then directed to the inside of the car. The evaporate "cooling" effect decreases with humidity because the air is already saturated with water. Therefore, the lower the humidity, such as in dry desert regions, the better the system works. Car coolers were popular, especially among summer tourists visiting or crossing the southwestern United States states of California, Arizona, Texas, New Mexico, and Nevada.

Types of automotive air conditioning refrigerants

R-12

R-12, the first automotive air conditioning refrigerant, was invented in 1928 by a team of scientists put together by Thomas Midgley, Jr. The team of scientists set out to create refrigerants which led to the invention of chlorofluorocarbons and hydrochlorofluorocarbons. From these two inventions, two refrigerants were created, R-12 and R-22. For many decades, both of these refrigerants could commonly be found in households and businesses. R-12 was also used in automotive air conditioning systems because it was the first safe non-flammable refrigerant. This refrigerant was the industry standard until the 1970s when scientists discovered that R-12 contained chlorine which depleted the ozone layer in the earth’s atmosphere. When R-12 was released from either a leak in systems or improperly disposing of contaminated freon, the gaseous freon would go up into the atmosphere. Chlorine molecules from the refrigerant would break up ozone molecules in the atmosphere, which produced holes in the ozone, that in turn contributed to the destruction of the ozone layer. R-12 continued to be used until a new refrigerant could be invented that had fewer negative effects. R-12 was used in automotive air conditioning systems until the mid-90s when production was banned by the government and replaced with a new refrigerant, R-134a. R-12 can still be bought and sold but is no longer produced. This makes R-12 very expensive and hard to find. R-12’s global warming potential number is very large at about 11,000.

R-134a

The second automotive air conditioning refrigerant invented was R-134a. R-134a is a hydrofluorocarbon refrigerant that contains fluorine and hydrogen. The successor to R-12, R-134a was a new refrigerant that no longer contained chlorine that could deplete the ozone layer. R-134a is a greenhouse gas, it has a lower global warming potential than R-12. New cars produced in the early 1990s contained the new refrigerant in their air conditioning systems. Owners of older cars with R-12 systems would either have to invest in an R-12 to R-134a conversion system, buy a new car, or find a qualified technician to recharge their older R-12 system. R-134a has been used in cars for almost 30 years. R-134a’s global warming potential number is about 1,430.

R-1234yf

The third and newest automotive air conditioning refrigerant is R-1234yf. R-1234yf is a hydrofluoroolefin refrigerant that contains hydrogen, fluorine, and also carbon elements. The refrigerant was developed by the DuPont/Honeywell company and is more expensive per pound than R-134a. R-1234yf can be found in late-model cars and is not cross-compatible with older R-134a or R-12 systems. Of the three refrigerants, R-1234yf is the best for the environment with the lowest global warming potential number which is about a three.