Antiporter


An antiporter is an integral membrane protein that uses secondary active transport to move two or more molecules in opposite directions across a phospholipid membrane. It is a type of cotransporter, which means that uses the energetically favorable movement of one molecule down its electrochemical gradient to power the energetically unfavorable movement of another molecule up its electrochemical gradient. This is in contrast to symporters, which are another type of cotransporter that moves two or more ions in the same direction, and primary active transport, which is directly powered by ATP.
Transport may involve one or more of each type of solute. For example, the Na+/Ca2+ exchanger, found in the plasma membrane of many cells, moves three sodium ions in one direction, and one calcium ion in the other. As with sodium in this example, antiporters rely on an established gradient that makes entry of one ion energetically favorable to force the unfavorable movement of a second molecule in the opposite direction. Through their diverse functions, antiporters are involved in various important physiological processes, such as regulation of the strength of cardiac muscle contraction, transport of carbon dioxide by erythrocytes, regulation of cytosolic pH, and accumulation of sucrose in plant vacuoles.

Background

s are found in all organisms and fall under the broader category of transport proteins, a diverse group of transmembrane proteins that includes uniporters, symporters, and antiporters. Each of them are responsible for providing a means of movement for water-soluble molecules that otherwise would not be able to pass through lipid-based plasma membrane. The simplest of these are the uniporters, which facilitate the movement of one type of molecule in the direction that follows its concentration gradient. In mammals, they are most commonly responsible for bringing glucose and amino acids into cells.
Symporters and antiporters are more complex because they move more than one ion and the movement of one of those ions is in an energetically unfavorable direction. As multiple molecules are involved, multiple binding processes must occur as the transporter undergoes a cycle of conformational changes to move them from one side of the membrane to the other. The mechanism used by these transporters limits their functioning to moving only a few molecules at a time. As a result, symporters and antiporters are characterized by a slower transport speed, moving between 102 and 104 molecules per second. Compare this to ion channels that provide a means for facilitated diffusion to occur and allow between 107 and 108 ions pass through the plasma membrane per second.
Though ATP-powered pumps also move molecules in an energetically unfavorable direction and undergo conformational changes to do so, they fall under a different category of membrane proteins because they couple the energy derived from ATP hydrolysis to transport their respective ions. These ion pumps are very selective, consisting of a double gating system where at least one of the gates is always shut. The ion is allowed to enter from one side of the membrane while one of the gates is open, after which it will shut. Only then will the second gate open to allow the ion to leave on the membrane's opposite side. The time between the alternating gate opening is referred to as the occluded state, where the ions are bound and both gates are shut. These gating reactions limit the speed of these pumps, causing them to function even slower than transport proteins, moving between 100 and 103 ions per second.

Structure and function

To function in active transport, a membrane protein must meet certain requirements. The first of these is that the interior of the protein must contain a cavity that is able to contain its corresponding molecule or ion. Next, the protein must be able to assume at least two different conformations, one with its cavity open to the extracellular space and the other with its cavity open to the cytosol. This is crucial for the movement of molecules from one side of the membrane to the other. Finally, the cavity of the protein must contain binding sites for its ligands, and these binding sites must have a different affinity for the ligand in each of the protein's conformations. Without this, the ligand will not be able to bind to the transporter on one side of the plasma membrane and be released from it on the other side. As transporters, antiporters have all of these features.
Because antiporters are highly diverse, their structure can vary widely depending upon the type of molecules being transported and their location in the cell. However, there are some common features that all antiporters share. One of these is multiple transmembrane regions that span the lipid bilayer of the plasma membrane and form a channel through which hydrophilic molecules can pass. These transmembrane regions are typically structured from alpha helices and are connected by loops in both the extracellular space and cytosol. These loops are what contain the binding sites for the molecules associated with the antiporter.
These features of antiporters allow them to carry out their function in maintaining cellular homeostasis. They provide a space where a hydrophilic molecule can pass through the hydrophobic lipid bilayer, allowing them to bypass the hydrophobic interactions of the plasma membrane. This enables the efficient movement of molecules needed for the environment of the cell, such as in the acidification of organelles. The varying affinity of the antiporter for each ion or molecule on either side of the plasma membrane allows it to bind to and release its ligands on the appropriate side of the membrane according to the electrochemical gradient of the ion being harnessed for its energetically favorable concentration.

Mechanism

The mechanism of antiporter transport involves several key steps and a series of conformational changes that are dictated by the structural element described above:
  1. The substrate binds to its specific binding site on the extracellular side of the plasma membrane, forming a temporary substrate-bound open form of the antiporter.
  2. This becomes an occluded, substrate-bound state that is still facing the extracellular space.
  3. The antiporter undergoes a conformational change to become an occluded, substrate-bound protein that is now facing the cytosol. As it does so, it passes through a temporary fully-occluded intermediate stage.
  4. The substrate is released from the antiporter as it takes on an open, inward-facing conformation.
  5. The antiporter can now bind to its second substrate and transport it in the opposite direction by taking on its transient substrate-bound open state.
  6. This is followed by an occluded, substrate-bound state that is still facing the cytosol, a conformation change with a temporary fully-occluded intermediate stage, and a return to the antiporter's open, outward-facing conformation.
  7. The second substrate is released and the antiporter can return to its original conformation state, where it is ready to bind to new molecules or ions and repeat its transport process.

    History

Antiporters were discovered as scientists were exploring ion transport mechanisms across biological membranes. The early studies took place in the mid-20th century and were focused on the mechanisms that transported ions such as sodium, potassium, and calcium across the plasma membrane. Researchers made the observation that these ions were moved in opposite directions and hypothesized the existence of membrane proteins that could facilitate this type of transport.
In the 1960's, biochemist Efraim Racker made a breakthrough in the discovery of antiporters. Through purification from bovine heart mitochondria, Racker and his colleagues found a mitochondrial protein that could exchange inorganic phosphate for hydroxide ions. The protein is located in the inner mitochondrial membrane and transports phosphate ions for use in oxidative phosphorylation. It became known as the phosphate-hydroxide antiporter, or mitochondrial phosphate carrier protein, and was the first example of an antiporter identified in living cells.
As time went on, researchers discovered other antiporters in different membranes and in various organisms. This includes the sodium-calcium exchanger, another crucial antiporter that regulates intracellular calcium levels through the exchange of sodium ions for calcium ions across the plasma membrane. It was discovered in the 1970s and is now a well-characterized antiporter known to be found in many different types of cells.
Advances in the fields of biochemistry and molecular biology have enabled the identification and characterization of a wide range of antiporters. Understanding the transport processes of various molecules and ions has provided insight into cellular transport mechanisms, as well as the role of antiporters in various physiological functions and in the maintenance of homeostasis

Role in homeostasis

Sodium-calcium exchanger

The sodium-calcium exchanger, also known as the Na+/Ca2+ exchanger or NCX, is an antiporter responsible for removing calcium from cells. This title encompasses a class of ion transporters that are commonly found in the heart, kidney, and brain. They use the energy stored in the electrochemical gradient of sodium to exchange the flow of three sodium ions into the cell for the export of one calcium ion. Though this exchanger is most common in the membranes of the mitochondria and the endoplasmic reticulum of excitable cells, it can be found in many different cell types in various species.
Although the sodium-calcium exchanger has a low affinity for calcium ions, it can transport a high amount of the ion in a short period of time. Because of these properties, it is useful in situations where there is an urgent need to export high amounts of calcium, such as after an action potential has occurred. Its characteristics also enable NCX to work with other proteins that have a greater affinity for calcium ions without interfering with their functions. NCX works with these proteins to carry out functions such as cardiac muscle relaxation, excitation-contraction coupling, and photoreceptor activity. They also maintain the concentration of calcium ions in the sarcoplasmic reticulum of cardiac cells, endoplasmic reticulum of excitable and nonexcitable cells, and the mitochondria.
Another key characteristic of this antiporter is its reversibility. This means that if the cell is depolarized enough, the extracellular sodium level is low enough, or the intracellular level of sodium is high enough, NCX will operate in the reverse direction and begin bringing calcium into the cell. For example, when NCX functions during excitotoxicity, this characteristic allows it to have a protective effect because the accompanying increase in intracellular calcium levels enables the exchanger to work in its normal direction regardless of the sodium concentration. Another example is the depolarization of cardiac muscle cells, which is accompanied by a large increase in the intracellular sodium concentration that causes NCX to work in reverse. Because the concentration of calcium is carefully regulated during the cardiac action potential, this is only a temporary effect as calcium is pumped out of the cell.
The sodium-calcium exchanger's role in maintaining calcium homeostasis in cardiac muscle cells allows it to help relax the heart muscle as it exports calcium during diastole. Therefore, its dysfunction can result in abnormal calcium movement and the development of various cardiac diseases. Abnormally high intracellular calcium levels can hinder diastole and cause abnormal systole and arrhythmias. Arrhythmias can occur when calcium is not properly exported by NCX, causing delayed afterdepolarizations and triggering abnormal activity that can possibly lead to atrial fibrillation and ventricular tachycardia.
If the heart experiences ischemia, the inadequate oxygen supply can disrupt ion homeostasis. When the body tries to stabilize this by returning blood to the area, ischemia-reperfusion injury, a type of oxidative stress, occurs. If NCX is dysfunctional, it can exacerbate the increase of calcium that accompanies reperfusion, causing cell death and tissue damage. Similarly, NCX dysfunction has found to be involved in ischemic strokes. Its activity is upregulated, causing an increased cytosolic calcium level, which can lead to neuronal cell death.
The Na+/Ca2+ exchanger has also been implicated in neurological disorders such as Alzheimer's disease and Parkinson's disease. Its dysfunction can result in oxidative stress and neuronal cell death, contributing to the cognitive decline that characterizes Alzheimer's disease. The dysregulation of calcium homeostasis has been found to be a key part of neuron death and Alzheimer's pathogenesis. For example, neurons that have neurofibrillary tangles contain high levels of calcium and show hyperactivation of calcium-dependent proteins. The abnormal calcium handling of atypical NCX function can also cause the mitochondrial dysfunction, oxidative stress, and neuronal cell death that characterize Parkinson's. In this case, if dopaminergic neurons of the substantia nigra are affected, it can contribute to the onset and development of Parkinson's disease. Although the mechanism is not entirely understood, disease models have shown a link between NCX and Parkinson's and that NCX inhibitors can prevent death of dopaminergic neurons.