Android (robot)
An android is a humanoid robot or other artificial being, often made from a flesh-like material. Historically, androids existed only in the domain of science fiction and were frequently seen in film and television, but advances in robot technology have allowed the creation of similar robots in real life.
Terminology
The Oxford English Dictionary traces the earliest use to Ephraim Chambers' 1728 Cyclopaedia, in reference to an automaton that St. Albertus Magnus allegedly created. By the late 1700s, "androides", elaborate mechanical devices resembling humans performing human activities, were displayed in exhibit halls.The term "android" appears in US patents as early as 1863 in reference to miniature human-like toy automatons. The term android was used in a more modern sense by the French author Auguste Villiers de l'Isle-Adam in his work Tomorrow's Eve, featuring an artificial humanoid robot named Hadaly. The term made an impact into English pulp science fiction starting from Jack Williamson's The Cometeers and the distinction between mechanical robots and fleshy androids was popularized by Edmond Hamilton's Captain Future stories.
Although Karel Čapek's robots in R.U.R. —the play that introduced the word robot—were organic artificial humans, the word "robot" has come to primarily refer to mechanical humans, animals, and other beings. The term "android" can mean either one of these, while a cyborg would be a creature that is a combination of organic and mechanical parts.
The term "droid", popularized by George Lucas in the original Star Wars film and now used widely within science fiction, originated as an abridgment of "android", but has been used by Lucas and others to mean any robot, including distinctly non-human form machines like R2-D2. The word "android" was used in Star Trek: The Original Series episode "What Are Little Girls Made Of?" The abbreviation "andy", coined as a pejorative by writer Philip K. Dick in his novel Do Androids Dream of Electric Sheep?, has seen some further usage, such as within the TV series Total Recall 2070.
While the term "android" is used in reference to human-looking robots in general, a robot with a female appearance can also be referred to as a gynoid. Besides one can refer to robots without alluding to their sexual appearance by calling them anthrobots or anthropoids.
Authors have used the term android in more diverse ways than robot or cyborg. In some fictional works, the difference between a robot and an android is only superficial, with androids being made to look like humans on the outside but with robot-like internal mechanics. In other stories, authors have used the word "android" to mean a wholly organic, yet artificial, creation. Other fictional depictions of androids fall somewhere in between.
Eric G. Wilson, who defines an android as a "synthetic human being", distinguishes between three types of androids, based on their body's composition:
- the mummy type – made of "dead things" or "stiff, inanimate, natural material", such as mummies, puppets, dolls, and statues
- the golem type – made from flexible, possibly organic material, including golems and homunculi
- the automaton type – made from a mix of dead and living parts, including automatons and robots
Projects
Several projects aiming to create androids that look, and, to a certain degree, speak or act like a human being have been launched or are underway.Japan
has been leading the field since the 1970s. Waseda University initiated the WABOT project in 1967, and in 1972 completed the WABOT-1, the first android, a full-scale humanoid intelligent robot. Its limb control system allowed it to walk with the lower limbs, and to grip and transport objects with hands, using tactile sensors. Its vision system allowed it to measure distances and directions to objects using external receptors, artificial eyes, and ears. And its conversation system allowed it to communicate with a person in Japanese, with an artificial mouth.In 1984, WABOT-2 was revealed and made a number of improvements. It was capable of playing the organ. Wabot-2 had ten fingers and two feet, and was able to read a score of music. It was also able to accompany a person. In 1986, Honda began its humanoid research and development program, to create humanoid robots capable of interacting successfully with humans.
The Intelligent Robotics Lab, directed by Hiroshi Ishiguro at Osaka University, and the Kokoro company demonstrated the Actroid at Expo 2005 in Aichi Prefecture, Japan and released the Telenoid R1 in 2010. In 2006, Kokoro developed a new DER 2 android. The height of the human body part of DER2 is 165 cm. There are 47 mobile points. DER2 can not only change its expression but also move its hands and feet and twist its body. The "air servosystem" which Kokoro developed originally is used for the actuator. As a result of having an actuator controlled precisely with air pressure via a servosystem, the movement is very fluid and there is very little noise. DER2 realized a slimmer body than that of the former version by using a smaller cylinder. Outwardly DER2 has a more beautiful proportion. Compared to the previous model, DER2 has thinner arms and a wider repertoire of expressions. Once programmed, it can choreograph its motions and gestures with its voice.
The Intelligent Mechatronics Lab, directed by Hiroshi Kobayashi at the Tokyo University of Science, has developed an android head called Saya, which was exhibited at Robodex 2002 in Yokohama, Japan. There are several other initiatives around the world involving humanoid research and development at this time, which will hopefully introduce a broader spectrum of realized technology in the near future. Now Saya is working at the Science University of Tokyo as a guide.
The Waseda University and NTT docomo's manufacturers have succeeded in creating a shape-shifting robot WD-2. It is capable of changing its face. At first, the creators decided the positions of the necessary points to express the outline, eyes, nose, and so on of a certain person. The robot expresses its face by moving all points to the decided positions, they say. The first version of the robot was developed back in 2003. After that, a year later, they made a couple of major improvements to the design. The robot features an elastic mask made from the average head dummy. It uses a driving system with a 3DOF unit. The WD-2 robot can change its facial features by activating specific facial points on a mask, with each point possessing three degrees of freedom. This one has 17 facial points, for a total of 56 degrees of freedom. As for the materials they used, the WD-2's mask is fabricated with a highly elastic material called Septom, with bits of steel wool mixed in for added strength. Other technical features reveal a shaft driven behind the mask at the desired facial point, driven by a DC motor with a simple pulley and a slide screw. Apparently, the researchers can also modify the shape of the mask based on actual human faces. To "copy" a face, they need only a 3D scanner to determine the locations of an individual's 17 facial points. After that, they are then driven into position using a laptop and 56 motor control boards. In addition, the researchers also mention that the shifting robot can even display an individual's hairstyle and skin color if a photo of their face is projected onto the 3D Mask.
Singapore
Prof Nadia Thalmann, a Nanyang Technological University scientist, directed efforts of the Institute for Media Innovation along with the School of Computer Engineering in the development of a social robot, Nadine. Nadine is powered by software similar to Apple's Siri or Microsoft's Cortana. Nadine may become a personal assistant in offices and homes in the future, or she may become a companion for the young and the elderly.Assoc Prof Gerald Seet from the School of Mechanical & Aerospace Engineering and the BeingThere Centre led a three-year R&D development in tele-presence robotics, creating EDGAR. A remote user can control EDGAR with the user's face and expressions displayed on the robot's face in real time. The robot also mimics their upper body movements.