Alkyne
In organic chemistry, an alkyne is an unsaturated hydrocarbon containing at least one carbon—carbon triple bond. The simplest acyclic alkynes with only one triple bond and no other functional groups form a homologous series with the general chemical formula . Alkynes are traditionally known as acetylenes, although the name acetylene also refers specifically to, known formally as ethyne using IUPAC nomenclature. Like other hydrocarbons, alkynes are generally hydrophobic.
Structure and bonding
In acetylene, the H–C≡C bond angles are 180°. By virtue of this bond angle, alkynes are rod-like. Correspondingly, cyclic alkynes are rare. Benzyne cannot be isolated. The C≡C bond distance of 118 picometers is much shorter than the C=C distance in alkenes or the C–C bond in alkanes.The triple bond is very strong with a bond strength of 839 kJ/mol. The sigma bond contributes 369 kJ/mol, the two pi bonds contribute 268 kJ/mol and 202 kJ/mol. Bonding is usually discussed in the context of molecular orbital theory, which recognizes triple bond arising from the overlap of s and p orbitals. In terms of valence bond theory, the carbon atoms in an alkyne bond are sp hybridized which means they each have two unhybridized p orbitals and two sp hybrid orbitals. Overlap of an sp orbital from each atom forms one sp–sp sigma bond. Each p orbital on one atom overlaps one on the other atom, forming two pi bonds, giving a total of three bonds. The remaining sp orbital on each atom can form a sigma bond to another atom. The two sp orbitals project on opposite sides of the carbon atom.
Terminal and internal alkynes
Internal alkynes feature carbon substituents on each acetylenic carbon. Symmetrical examples include diphenylacetylene and 3-hexyne. They may also be asymmetrical, such as in 2-pentyne.Terminal alkynes have the formula, where at least one end of the alkyne is a hydrogen atom. An example is methylacetylene. They are often prepared by alkylation of monosodium acetylide. Terminal alkynes, like acetylene itself, are mildly acidic, with pKa values of around 25. They are far more acidic than alkenes and alkanes, which have pKa values of around 40 and 50, respectively. The acidic hydrogen on terminal alkynes can be replaced by a variety of groups resulting in halo-, silyl-, and alkoxoalkynes. The carbanions generated by deprotonation of terminal alkynes are called acetylides. Internal alkynes are also considerably more acidic than alkenes and alkanes, though not nearly as acidic as terminal alkynes. The C–H bonds at the α position of alkynes can also be deprotonated using strong bases, with an estimated pKa of 35. This acidity can be used to isomerize internal alkynes to terminal alkynes using the alkyne zipper reaction.
Isomerism
Alkynes having four or more carbon atoms can form different structural isomers by having the triple bond in different positions or having some of the carbon atoms be substituents rather than part of the parent chain. Other non-alkyne structural isomers are also possible.- : acetylene only
- : propyne only
- : 2 isomers: 1-butyne, and 2-butyne
- : 3 isomers: 1-pentyne, 2-pentyne, and 3-methyl-1-butyne
- : 7 isomers: 1-hexyne, 2-hexyne, 3-hexyne, 4-methyl-1-pentyne, 4-methyl-2-pentyne, 3-methyl-1-pentyne, 3,3-dimethyl-1-butyne
Naming alkynes
In chemistry, the suffix -yne is used to denote the presence of a triple bond. In organic chemistry, the suffix often follows IUPAC nomenclature. However, inorganic compounds featuring unsaturation in the form of triple bonds may be denoted by substitutive nomenclature with the same methods used with alkynes. "-diyne" is used when there are two triple bonds, and so on. In case of multiple triple bonds, the position of unsaturation is indicated by a numerical locant immediately preceding the "-yne" suffix, or 'locants'. Locants are chosen so that the numbers are low as possible. "-yne" is also used as a suffix to name substituent groups that are triply bound to the parent compound.
Sometimes a number between hyphens is inserted before it to state which atoms the triple bond is between. This suffix arose as a collapsed form of the end of the word "acetylene". The final "-e" disappears if it is followed by another suffix that starts with a vowel.
Synthesis
From calcium carbide
Classically, acetylene was prepared by hydrolysis of calcium carbide :which was in turn synthesized by combining quicklime and coke in an electric arc furnace at 2200 °C:
This was an industrially important process which provided access to hydrocarbons from coal resources for countries like Germany and China. However, the energy-intensive nature of this process is a major disadvantage and its share of the world's production of acetylene has steadily decreased relative to hydrocarbon cracking.
Cracking
Commercially, the dominant alkyne is acetylene itself, which is used as a fuel and a precursor to other compounds, e.g., acrylates. Hundreds of millions of kilograms are produced annually by partial oxidation of natural gas:Propyne, also industrially useful, is also prepared by thermal cracking of hydrocarbons.
Alkylation and arylation of terminal alkynes
Terminal alkynes can be deprotonated by bases like NaNH2, BuLi, or EtMgBr to give acetylide anions which can be alkylated by addition to carbonyl groups, ring opening of epoxides, or SN2-type substitution of unhindered primary alkyl halides.In the presence of transition metal catalysts, classically a combination of Pd2Cl2 and CuI, terminal acetylenes can react with aryl iodides and bromides in the presence of a secondary or tertiary amine like Et3N to give arylacetylenes in the Sonogashira reaction.
The availability of these reliable reactions makes terminal alkynes useful building blocks for preparing internal alkynes.
Dehydrohalogenation and related reactions
Alkynes are prepared from 1,1- and 1,2-dihaloalkanes by double dehydrohalogenation. The reaction provides a means to generate alkynes from alkenes, which are first halogenated and then dehydrohalogenated. For example, phenylacetylene can be generated from styrene by bromination followed by treatment of the resulting of 1,2-dibromo-1-phenylethane with sodium amide in ammonia:Via the Fritsch–Buttenberg–Wiechell rearrangement, alkynes are prepared from vinyl bromides. Alkynes can be prepared from aldehydes using the Corey–Fuchs reaction and from aldehydes or ketones by the Seyferth–Gilbert homologation.
Vinyl halides are susceptible to dehydrohalogenation.
Reactions and applications
Featuring a reactive functional group, alkynes participate in many organic reactions. Such use was pioneered by Ralph Raphael, who in 1955 wrote the first book describing their versatility as intermediates in synthesis. In spite of their kinetic stability due to their strong triple bonds, alkynes are a thermodynamically unstable functional group, as can be gleaned from the highly positive heats of formation of small alkynes. For example, acetylene has a heat of formation of +227.4 kJ/mol, indicating a much higher energy content compared to its constituent elements. The highly exothermic combustion of acetylene is exploited industrially in oxyacetylene torches used in welding. Other reactions involving alkynes are often highly thermodynamically favorable for the same reason.Hydrogenation
Being more unsaturated than alkenes, alkynes characteristically undergo reactions that show that they are "doubly unsaturated". Alkynes are capable of adding two equivalents of, whereas an alkene adds only one equivalent. Depending on catalysts and conditions, alkynes add one or two equivalents of hydrogen. Partial hydrogenation, stopping after the addition of only one equivalent to give the alkene, is usually more desirable since alkanes are less useful:The largest scale application of this technology is the conversion of acetylene to ethylene in refineries. For more complex alkynes, the Lindlar catalyst is widely recommended to avoid formation of the alkane, for example in the conversion of phenylacetylene to styrene. Similarly, halogenation of alkynes gives the alkene dihalides or alkyl tetrahalides:
The addition of one equivalent of to internal alkynes gives cis-alkenes.
Addition of halogens and related reagents
Alkynes characteristically are capable of adding two equivalents of halogens and hydrogen halides.The addition of nonpolar bonds across is general for silanes, boranes, and related hydrides. The hydroboration of alkynes gives vinylic boranes which oxidize to the corresponding aldehyde or ketone. In the thiol-yne reaction the substrate is a thiol.
Addition of hydrogen halides has long been of interest. In the presence of mercuric chloride as a catalyst, acetylene and hydrogen chloride react to give vinyl chloride. While this method has been abandoned in the West, it remains the main production method in China.
Hydration
The hydration reaction of acetylene gives acetaldehyde. The reaction proceeds by formation of vinyl alcohol, which tautomerizes to form the aldehyde. This reaction was once a major industrial process but it has been displaced by the Wacker process. This reaction occurs in nature, the catalyst being acetylene hydratase.Hydration of phenylacetylene gives acetophenone:
Methylgold| catalyzes hydration of 1,8-nonadiyne to 2,8-nonanedione: