Contour line


A contour line of a function of two variables is a curve along which the function has a constant value, so that the curve joins points of equal value. It is a plane section of the three-dimensional graph of the function parallel to the -plane. More generally, a contour line for a function of two variables is a curve connecting points where the function has the same particular value.
In cartography, a contour line joins points of equal elevation above a given level, such as mean sea level. A contour map is a map illustrated with contour lines, for example a topographic map, which thus shows valleys and hills, and the steepness or gentleness of slopes. The contour interval of a contour map is the difference in elevation between successive contour lines.
The gradient of the function is always perpendicular to the contour lines. When the lines are close together the magnitude of the gradient is large: the variation is steep. A level set is a generalization of a contour line for functions of any number of variables.
Contour lines are curved, straight or a mixture of both lines on a map describing the intersection of a real or hypothetical surface with one or more horizontal planes. The configuration of these contours allows map readers to infer the relative gradient of a parameter and estimate that parameter at specific places. Contour lines may be either traced on a visible three-dimensional model of the surface, as when a photogrammetrist viewing a stereo-model plots elevation contours, or interpolated from the estimated surface elevations, as when a computer program threads contours through a network of observation points of area centroids. In the latter case, the method of interpolation affects the reliability of individual isolines and their portrayal of slope, pits and peaks.

History

The idea of lines that join points of equal value was rediscovered several times. The oldest known isobath is found on a map dated 1584 of the river Spaarne, near Haarlem, by Dutchman Pieter Bruinsz. In 1701, Edmond Halley used such lines on a chart of magnetic variation. The Dutch engineer Nicholas Cruquius drew the bed of the river Merwede with lines of equal depth at intervals of 1 fathom in 1727, and Philippe Buache used them at 10-fathom intervals on a chart of the English Channel that was prepared in 1737 and published in 1752. Such lines were used to describe a land surface in a map of the Duchy of Modena and Reggio by Domenico Vandelli in 1746, and they were studied theoretically by Ducarla in 1771, and Charles Hutton used them in the Schiehallion experiment. In 1791, a map of France by J. L. Dupain-Triel used contour lines at 20-metre intervals, hachures, spot-heights and a vertical section. In 1801, the chief of the French Corps of Engineers, Haxo, used contour lines at the larger scale of 1:500 on a plan of his projects for Rocca d'Anfo, now in northern Italy, under Napoleon.
By around 1843, when the Ordnance Survey started to regularly record contour lines in Great Britain and Ireland, they were already in general use in European countries. Isobaths were not routinely used on nautical charts until those of Russia from 1834, and those of Britain from 1838.
As different uses of the technique were invented independently, cartographers began to recognize a common theme, and debated what to call these "lines of equal value" generally. The word isogram was proposed by Francis Galton in 1889 for lines indicating equality of some physical condition or quantity, though isogram can also refer to a word without a repeated letter. As late as 1944, John K. Wright still preferred isogram, but it never attained wide usage. During the early 20th century, isopleth was being used by 1911 in the United States, while isarithm had become common in Europe. Additional alternatives, including the Greek-English hybrid isoline and isometric line, also emerged. Despite attempts to select a single standard, all of these alternatives have survived to the present.
When maps with contour lines became common, the idea spread to other applications. Perhaps the latest to develop are air quality and noise pollution contour maps, which first appeared in the United States in approximately 1970, largely as a result of national legislation requiring spatial delineation of these parameters.

Types

Contour lines are often given specific names beginning with "iso-" according to the nature of the variable being mapped, although in many usages the phrase "contour line" is most commonly used. Specific names are most common in meteorology, where multiple maps with different variables may be viewed simultaneously. The prefix "iso-" can be replaced with "isallo-" to specify a contour line connecting points where a variable changes at the same rate during a given time period.
An
isogon is a contour line for a variable which measures direction. In meteorology and in geomagnetics, the term isogon has specific meanings which are described below. An isocline' is a line joining points with equal slope. In population dynamics and in geomagnetics, the terms isocline and isoclinic line have specific meanings which are described below.

Equidistant points

A curve of equidistant points is a set of points all at the same distance from a given point, line, or polyline. In this case the function whose value is being held constant along a contour line is a distance function.

Isopleths

In 1944, John K. Wright proposed that the term isopleth be used for contour lines that depict a variable which cannot be measured at a point, but which instead must be calculated from data collected over an area, as opposed to isometric lines for variables that could be measured at a point; this distinction has since been followed generally. An example of an isopleth is population density, which can be calculated by dividing the population of a census district by the surface area of that district. Each calculated value is presumed to be the value of the variable at the centre of the area, and isopleths can then be drawn by a process of interpolation. The idea of an isopleth map can be compared with that of a choropleth map.
In meteorology, the word isopleth is used for any type of contour line.

Meteorology

Meteorological contour lines are based on interpolation of the point data received from weather stations and weather satellites. Weather stations are seldom exactly positioned at a contour line. Instead, lines are drawn to best approximate the locations of exact values, based on the scattered information points available.
Meteorological contour maps may present collected data such as actual air pressure at a given time, or generalized data such as average pressure over a period of time, or forecast data such as predicted air pressure at some point in the future.
Thermodynamic diagrams use multiple overlapping contour sets to present a picture of the major thermodynamic factors in a weather system.

Barometric pressure

An isobar is a line of equal or constant pressure on a graph, plot, or map; an isopleth or contour line of pressure. More accurately, isobars are lines drawn on a map joining places of equal average atmospheric pressure reduced to sea level for a specified period of time. In meteorology, the barometric pressures shown are reduced to sea level, not the surface pressures at the map locations. The distribution of isobars is closely related to the magnitude and direction of the wind field, and can be used to predict future weather patterns. Isobars are commonly used in television weather reporting.
Isallobars are lines joining points of equal pressure change during a specific time interval. These can be divided into anallobars, lines joining points of equal pressure increase during a specific time interval, and katallobars, lines joining points of equal pressure decrease. In general, weather systems move along an axis joining high and low isallobaric centers. Isallobaric gradients are important components of the wind as they increase or decrease the geostrophic wind.
An isopycnal is a line of constant density. An isoheight or isohypse is a line of constant geopotential height on a constant pressure surface chart. Isohypse and isoheight are simply known as lines showing equal pressure on a map.

Temperature and related subjects

An isotherm is a line that connects points on a map that have the same temperature. Therefore, all points through which an isotherm passes have the same or equal temperatures at the time indicated. An isotherm at 0 °C is called the freezing level. The term lignes isothermes '' was coined by the Prussian geographer and naturalist Alexander von Humboldt, who as part of his research into the geographical distribution of plants published the first map of isotherms in Paris, in 1817. According to Thomas Hankins, the Scottish engineer William Playfair's graphical developments greatly influenced Alexander von Humbolt's invention of the isotherm. Humbolt later used his visualizations and analyses to contradict theories by Kant and other Enlightenment thinkers that non-Europeans were inferior due to their climate.
An isocheim is a line of equal mean winter temperature, and an isothere is a line of equal mean summer temperature.
An isohel is a line of equal or constant solar radiation.
An isogeotherm is a line of equal temperature beneath the Earth's surface.

Rainfall and air moisture

An isohyet or isohyetal line is a line on a map joining points of equal rainfall in a given period. A map with isohyets is called an isohyetal map.
An isohume is a line of constant relative humidity, while an isodrosotherm is a line of equal or constant dew point.
An isoneph is a line indicating equal cloud cover.
An isochalaz is a line of constant frequency of hail storms, and an isobront is a line drawn through geographical points at which a given phase of thunderstorm activity occurred simultaneously.
Snow cover is frequently shown as a contour-line map.