Aerial photography
Aerial photography is the taking of photographs from an aircraft or other airborne platforms. When taking motion pictures, it is also known as aerial videography.
Platforms for aerial photography include fixed-wing aircraft, helicopters, unmanned aerial vehicles, balloons, blimps and dirigibles, rockets, pigeons, kites, or using action cameras while skydiving or wingsuiting. Handheld cameras may be manually operated by the photographer, while mounted cameras are usually remotely operated or triggered automatically.
File:Det smukke Hraunfossar.jpg|thumb|Hraunfossar, Iceland captured by a drone-camera
Aerial photography typically refers specifically to bird's-eye view images that focus on landscapes and surface objects, and should not be confused with air-to-air photography, where one or more aircraft are used as chase planes that "chase" and photograph other aircraft in flight. Elevated photography can also produce bird's-eye images closely resembling aerial photography when telephotoing from high vantage structures, suspended on cables or on top of very tall poles that are either handheld, fixed firmly to the ground or mounted above vehicles.
History
Early
Aerial photography was first practiced by the French photographer and balloonist Gaspard-Félix Tournachon, known as "Nadar", in 1858 over Paris, France. However, the photographs he produced no longer exist and therefore the earliest surviving aerial photograph is titled 'Boston, as the Eagle and the Wild Goose See It.' Taken by James Wallace Black and Samuel Archer King on October 13, 1860, it depicts Boston from a height of 630m.File:Cecil Shadbolt collection - 54 - An aerial view showing Stonebridge Road, Stamford Hill, and Seven Sisters Curve, part of the Tottenham and Hampstead Junction Railway, taken from 2000ft.jpg|thumb|Aerial view by Cecil Shadbolt, showing Stonebridge Road, Stamford Hill, and Seven Sisters Curve, part of the Tottenham and Hampstead Junction Railway, taken from on 29 May 1882 – the earliest extant aerial photograph taken in the British Isles
Kite aerial photography was pioneered by British meteorologist E.D. Archibald in 1882. He used an explosive charge on a timer to take photographs from the air. The same year, Cecil Shadbolt devised a method of taking photographs from the basket of a gas balloon, including shots looking vertically downwards. One of his images, taken from over Stamford Hill, is the earliest extant aerial photograph taken in the British Isles. A print of the same image, An Instantaneous Map Photograph taken from the Car of a Balloon, 2,000 feet high, was shown at the 1882 Photographic Society exhibition.
Frenchman Arthur Batut began using kites for photography in 1888, and wrote a book on his methods in 1890. Samuel Franklin Cody developed his advanced 'Man-lifter War Kite' and succeeded in interesting the British War Office with its capabilities.
File:Kite Photo of Reeds Lake and Ramona Park, Grand Rapids MI. Postcard - 001.jpeg|thumbnail|Antique postcard from Grand Rapids, Michigan, using kite photo technique
In 1908, Albert Samama Chikly filmed the first ever aerial views using a balloon between Hammam-Lif and Grombalia.
The first use of a motion picture camera mounted to a heavier-than-air aircraft took place on April 24, 1909, over Rome in the 3:28 silent film short, Wilbur Wright und seine Flugmaschine.
World War I
The use of aerial photography rapidly matured during the war, as reconnaissance aircraft were equipped with cameras to record enemy movements and defenses. At the start of the conflict, the usefulness of aerial photography was not fully appreciated, with reconnaissance being accomplished with map sketching from the air.Germany adopted the first aerial camera, a Görz, in 1913. The French began the war with several squadrons of Blériot observation aircraft equipped with cameras for reconnaissance. The French Army developed procedures for getting prints into the hands of field commanders in record time.
Frederick Charles Victor Laws started aerial photography experiments in 1912 with No.1 Squadron of the Royal Flying Corps, taking photographs from the British dirigible Beta. He discovered that vertical photos taken with a 60% overlap could be used to create a stereoscopic effect when viewed in a stereoscope, thus creating a perception of depth that could aid in cartography and in intelligence derived from aerial images. The Royal Flying Corps recon pilots began to use cameras for recording their observations in 1914 and by the Battle of Neuve Chapelle in 1915, the entire system of German trenches was being photographed. In 1916, the Austro-Hungarian Monarchy made vertical camera axis aerial photos above Italy for map-making.
The first purpose-built and practical aerial camera was invented by Captain John Moore-Brabazon in 1915 with the help of the Thornton-Pickard company, greatly enhancing the efficiency of aerial photography. The camera was inserted into the floor of the aircraft and could be triggered by the pilot at intervals. Moore-Brabazon also pioneered the incorporation of stereoscopic techniques into aerial photography, allowing the height of objects on the landscape to be discerned by comparing photographs taken at different angles.
By the end of the war, aerial cameras had dramatically increased in size and focal power and were used increasingly frequently as they proved their pivotal military worth; by 1918, both sides were photographing the entire front twice a day and had taken over half a million photos since the beginning of the conflict. In January 1918, General Allenby used five Australian pilots from No. 1 Squadron AFC to photograph a area in Palestine as an aid to correcting and improving maps of the Turkish front. This was a pioneering use of aerial photography as an aid for cartography. Lieutenants Leonard Taplin, Allan Runciman Brown, H. L. Fraser, Edward Patrick Kenny, and L. W. Rogers photographed a block of land stretching from the Turkish front lines deep into their rear areas. Beginning 5 January, they flew with a fighter escort to ward off enemy fighters. Using Royal Aircraft Factory BE.12 and Martinsyde airplanes, they not only overcame enemy air attacks, but also had to contend with winds, antiaircraft fire, and malfunctioning equipment to complete their task.
Commercial
The first commercial aerial photography company in the UK was Aerofilms Ltd, founded by World War I veterans Francis Wills and Claude Graham White in 1919. The company soon expanded into a business with major contracts in Africa and Asia as well as in the UK. Operations began from the Stag Lane Aerodrome at Edgware, using the aircraft of the London Flying School. Subsequently, the Aircraft Manufacturing Company, hired an Airco DH.9 along with pilot entrepreneur Alan Cobham.From 1921, Aerofilms carried out vertical photography for survey and mapping purposes. During the 1930s, the company pioneered the science of photogrammetry, with the Ordnance Survey amongst the company's clients. In 1920, the Australian Milton Kent started using a half-plate oblique aero camera purchased from Carl Zeiss AG in his aerial photographic business.
Another successful pioneer of the commercial use of aerial photography was the American Sherman Fairchild who started with his own aircraft firm Fairchild Aircraft to develop and build specialized aircraft for high altitude aerial survey missions. One Fairchild aerial survey aircraft in 1935 carried a unit that combined two synchronized cameras. Utilizing two units of ten lenses each with a ten-inch lens, the aircraft took photos from 23,000 feet. Each photo covered two hundred and twenty-five square miles. One of its first government contracts was an aerial survey of New Mexico to study soil erosion. A year later, Fairchild introduced a better high altitude camera with a nine-lens in one unit that could take a photo covering 600 square miles with each exposure from 30,000 feet.
World War II
In 1939, Sidney Cotton and Flying Officer Maurice Longbottom of the RAF were among the first to suggest that airborne reconnaissance may be a task better suited to fast, small aircraft which would use their speed and high service ceiling to avoid detection and interception. Although this seems obvious now, with modern reconnaissance tasks performed by fast, high flying aircraft, at the time it was radical thinking.They proposed the use of Spitfires with their armament and radios removed and replaced with extra fuel and cameras. This led to the development of the Spitfire PR variants. Spitfires proved to be extremely successful in their reconnaissance role and there were many variants built specifically for that purpose. They served initially with what later became No. 1 Photographic Reconnaissance Unit. In 1928, the RAF developed an electric heating system for the aerial camera. This allowed reconnaissance aircraft to take pictures from very high altitudes without the camera parts freezing. Based at RAF Medmenham, the collection and interpretation of such photographs became a considerable enterprise.
Cotton's aerial photographs were far ahead of their time. Together with other members of the 1 PRU, he pioneered the techniques of high-altitude, high-speed stereoscopic photography that were instrumental in revealing the locations of many crucial military and intelligence targets. According to R.V. Jones, photographs were used to establish the size and the characteristic launching mechanisms for both the V-1 flying bomb and the V-2 rocket. Cotton also worked on ideas such as a prototype specialist reconnaissance aircraft and further refinements of photographic equipment. At the peak, the British flew over 100 reconnaissance flights a day, yielding 50,000 images per day to interpret. Similar efforts were taken by other countries.
While stationed on an aircraft carrier in Imperial Japan, FS Hussain, a pilot in the Royal Indian Air Force, was tasked with photographing the aftermath of the Atomic bombings of Hiroshima and Nagasaki. Unaware of the risks of exposure to radiation, it led to his death in 1969 at the age of 44.