Athlon
AMD Athlon is the brand name applied to a series of x86-compatible microprocessors designed and manufactured by Advanced Micro Devices. The original Athlon was the first seventh-generation x86 processor and the first desktop processor to reach speeds of one gigahertz. It made its debut as AMD's high-end processor brand on June 23, 1999. Over the years AMD has used the Athlon name with the 64-bit Athlon 64 architecture, the Athlon II, and Accelerated Processing Unit chips targeting the Socket AM1 desktop SoC architecture, and Socket AM4 Zen. The modern Zen-based Athlon with a Radeon Graphics processor was introduced in 2019 as AMD's highest-performance entry-level processor.
Brand history
K7 design and development
The first Athlon processor was a result of AMD's development of K7 processors in the 1990s. AMD founder and then-CEO Jerry Sanders aggressively pursued strategic partnerships and engineering talent in the late 1990s, working to build on earlier successes in the PC market with the AMD K6 processor line. One major partnership announced in 1998 paired AMD with semiconductor giant Motorola to co-develop copper-based semiconductor technology, resulting in the K7 project being the first commercial processor to utilize copper fabrication technology. In the announcement, Sanders referred to the partnership as creating a "virtual gorilla" that would enable AMD to compete with Intel on fabrication capacity while limiting AMD's financial outlay for new facilities. The K7 design team was led by Dirk Meyer, who had previously worked as a lead engineer at DEC on multiple Alpha microprocessors. When DEC was sold to Compaq in 1998 and discontinued Alpha processor development, Sanders brought most of the Alpha design team to the K7 project. This added to the previously acquired NexGen K6 team, which already included engineers such as Vinod Dham.Original release
The AMD Athlon processor launched on June 23, 1999, with general availability by August 1999. Subsequently, from August 1999 until January 2002, this initial K7 processor was the fastest x86 chip in the world. Wrote the Los Angeles Times on October 5, 1999: "AMD has historically trailed Intel’s fastest processors, but has overtaken the industry leader with the new Athlon. Analysts say the Athlon, which will be used by Compaq, IBM and other manufacturers in their most powerful PCs, is significantly faster than Intel’s flagship Pentium III, which runs at a top speed of 600MHz." A number of features helped the chips compete with Intel. By working with Motorola, AMD had been able to refine copper interconnect manufacturing about one year before Intel, with the revised process permitting 180-nanometer processor production. The accompanying die-shrink resulted in lower power consumption, permitting AMD to increase Athlon clock speeds to the 1 GHz range. The Athlon architecture also used the EV6 bus licensed from DEC as its main system bus, allowing AMD to develop its own products without needing to license Intel's GTL+ bus. By the summer of 2000, AMD was shipping Athlons at high volume, and the chips were being used in systems by Gateway, Hewlett-Packard, and Fujitsu Siemens Computers among others.Later Athlon iterations
The second-generation Athlon, the Thunderbird, debuted in 2000. AMD released the Athlon XP the following year, and the Athlon XP's immediate successor, the Athlon 64, was an AMD64-architecture microprocessor released in 2003. After the 2007 launch of the Phenom processors, the Athlon name was also used for mid-range processors, positioned above brands such as Sempron. The Athlon 64 X2 was released in 2005 as the first native dual-core desktop CPU designed by AMD, and the Athlon X2 was a subsequent family based on the Athlon 64 X2. Introduced in 2009, Athlon II was a dual-core family of Athlon chips.A USD$55 low-power Athlon 200GE with a Radeon graphics processor was introduced in September 2018, sitting under the Ryzen 3 2200G. This iteration of Athlon used AMD's Zen-based Raven Ridge core, which in turn had debuted in Ryzen with Radeon graphics processors. With the release, AMD began using the Athlon brand name to refer to "low-cost, high-volume products", in a situation similar to both Intel's Celeron and Pentium Gold. The modern Athlon 3000G was introduced in 2019 and was positioned as AMD's highest-performance entry-level processor. AMD positions the Athlon against its rival, the Intel Pentium. While CPU processing performance is in the same ballpark, the Athlon 3000G uses Radeon Vega graphics, which are rated as more powerful than the Pentium's Intel UHD Graphics.
Generations
Athlon Classic (1999)
The AMD Athlon processor launched on June 23, 1999, with general availability by August 1999. Subsequently, from August 1999 until January 2002, this initial K7 processor was the fastest x86 chip in the world. At launch it was, on average, 10% faster than the Pentium III at the same clock for business applications and 20% faster for gaming workloads. In commercial terms, the Athlon "Classic" was an enormous success.;Features
Image:Amd athlon classic.jpg|left|thumb|Logo on Slot A Athlon cartridge
The Athlon Classic is a cartridge-based processor, named Slot A and similar to Intel's cartridge Slot 1 used for Pentium II and Pentium III. It used the same, commonly available, physical 242-pin connector used by Intel Slot 1 processors but rotated by 180 degrees to connect the processor to the motherboard. The cartridge assembly allowed the use of higher-speed cache memory modules than could be put on motherboards at the time. Similar to the Pentium II and the Katmai-based Pentium III, the Athlon Classic contained 512 KB of L2 cache. This high-speed SRAM cache was run at a divisor of the processor clock and was accessed via its own 64-bit back-side bus, allowing the processor to service both front-side bus requests and cache accesses simultaneously, as compared to pushing everything through the front-side bus.
The Argon-based Athlon contained 22 million transistors and measured 184 mm2. It was fabricated by AMD in a version of their CS44E process, a 250 nm complementary metal–oxide–semiconductor process with six levels of aluminium interconnect. "Pluto" and "Orion" Athlons were fabricated in a 180 nm process.
Image:Athlon arch.png|thumb|left|350px|Athlon architecture
Image:Slot-A Athlon.jpg|thumb|250px|An open Slot A cartridge. MPU die is in the center.
Image:Argonathlon.jpg|thumb|250px|Athlon Slot A cartridge. Note heat sink and cooling fan assembly on rear side.
The Athlon's CPU cache consisted of the typical two levels. Athlon was the first x86 processor with a 128 KB split level-1 cache; a 2-way associative cache separated into 2×64 KB for data and instructions. SRAM cache designs at the time were incapable of keeping up with the Athlon's clock scalability, resulting in compromised CPU performance in some computers. With later Athlon models, AMD would integrate the L2 cache onto the processor itself, removing dependence on external cache chips. The Slot-A Athlons were the first multiplier-locked CPUs from AMD, preventing users from setting their own desired clock speed. This was done by AMD in part to hinder CPU remarking and overclocking by resellers, which could result in inconsistent performance. Eventually a product called the "Goldfingers device" was created that could unlock the CPU.
AMD designed the CPU with more robust x86 instruction decoding capabilities than that of K6, to enhance its ability to keep more data in-flight at once. The critical branch-predictor unit was enhanced compared to the K6. Deeper pipelining with more stages allowed higher clock speeds to be attained. Like the AMD K5 and K6, the Athlon dynamically buffered internal micro-instructions at runtime resulting from parallel x86 instruction decoding. The CPU is an out-of-order design, again like previous post-5x86 AMD CPUs. The Athlon utilizes the Alpha 21264's EV6 bus architecture with double data rate technology.
AMD ended its long-time handicap with floating point x87 performance by designing a super-pipelined, out-of-order, triple-issue floating-point unit. Each of its three units could independently calculate an optimal type of instructions with some redundancy, making it possible to operate on more than one floating-point instruction at once. This FPU was a huge step forward for AMD, helping compete with Intel's P6 FPU. The 3DNow! floating-point SIMD technology, again present, received some revisions and was renamed "Enhanced 3DNow!" Additions included DSP instructions and the extended MMX subset of Intel SSE.
;Specifications
- L1-cache: 64 + 64 KB
- L2-cache: 512 KB, external chips on CPU module with 50%, 40% or 33% of CPU speed
- MMX, 3DNow!
- Slot A
- Front-side bus:100 MHz
- Vcore: 1.6 V, 1.6–1.8 V
- First release: June 23, 1999, November 29, 1999
- Clock-rate: 500–700 MHz, 550–1000 MHz
Athlon Thunderbird (2000–2001)
The Thunderbird was "cherished by many for its overclockability" and proved commercially successful, as AMD's most successful product since the Am386DX-40 ten years earlier. AMD's new fab facility in Dresden increased production for AMD overall and put out Thunderbirds at a fast rate, with the process technology improved by a switch to copper interconnects. After several versions were released in 2000 and 2001 of the Thunderbird, the last Athlon processor using the Thunderbird core was released in 2001 in the summer, at which point speeds were at 1.4 GHz.
;Specifications
- L1-cache: 64 + 64 KB
- L2-cache: 256 KB, full speed
- MMX, 3DNow!
- Slot A & Socket A
- Front-side bus: 100 MHz, 133 MHz
- Vcore: 1.70–1.75 V
- First release: June 4, 2000
- Transistor count: 37 million
- Manufacturing process: /180 nm
- Clock rate:
- * Slot A: 650–1000 MHz
- * Socket A, 100 MHz FSB : 600–1400 MHz
- * Socket A, 133 MHz FSB : 1000–1400 MHz