Zopiclone
Zopiclone, sold under the brand name Imovane among others, is a nonbenzodiazepine, specifically a cyclopyrrolone, used to treat insomnia. While molecularly distinct from benzodiazepine drugs, Zopiclone's mechanism of action is similar; it increases the normal transmission of the neurotransmitter gamma-aminobutyric acid in the central nervous system, via positive allosteric modulation at GABAA neurons.
Zopiclone is considered a sedative and CNS depressant. After prolonged use, the body can become accustomed to the effects of zopiclone. When the dose is then reduced or the drug is abruptly stopped, withdrawal symptoms may result. These can include a range of symptoms similar to those of benzodiazepine withdrawal. Although withdrawal symptoms from therapeutic doses of zopiclone and its isomers do not typically present with convulsions and are therefore not considered life-threatening, patients may experience such significant agitation or anxiety that they seek emergency medical attention.
In the United States, zopiclone is not commercially available, although its active stereoisomer, eszopiclone, is. Zopiclone is a controlled substance in the United States, Japan, Brazil, New Zealand and some European countries, and may be illegal to possess without a prescription.
Zopiclone is known colloquially as a "Z-drug". Other Z-drugs include zaleplon and zolpidem and were initially thought to be less addictive than benzodiazepines. However, this appraisal has shifted somewhat in the last few years as cases of addiction and habituation have been presented. Zopiclone is recommended to be taken at the lowest effective dose, with a duration of 2–3 weeks for short-term insomnia. Daily or continuous use of the drug is not usually advised, and caution must be taken when the compound is used in conjunction with benzodiazepines, sedatives or other drugs affecting the central nervous system.
Medical uses
Zopiclone is used for the short-term treatment of insomnia where difficulty with sleep initiation or sleep maintenance are prominent symptoms. Long-term use is not recommended, as tolerance, dependence, and addiction can occur. One low-quality study found that zopiclone is ineffective in improving sleep quality or increasing sleep time in shift workers, and more research in this area has been recommended.Cognitive behavioral therapy has been found to be superior to zopiclone in the treatment of insomnia and has been found to have lasting effects on sleep quality for at least a year after therapy.
Long-term use of Z-drugs, including zopiclone, has been associated with dependence, withdrawal symptoms, and cognitive impairment
Alternative approaches such as lifestyle modification, melatonin supplementation, mindfulness, and certain traditional herbal medicines have been explored as supportive options for managing insomnia, though further clinical research is required.
Specific populations
Elderly
Zopiclone, similar to other benzodiazepines and nonbenzodiazepine hypnotic drugs, causes impairments in body balance and standing steadiness in individuals who wake up at night or the next morning. Falls and hip fractures are frequently reported. The combination with alcohol consumption increases these impairments. Partial, but incomplete tolerance develops to these impairments.Zopiclone increases postural sway and increases the number of falls in older people, as well as cognitive side effects. Falls are a significant cause of death in older people.
An extensive review of the medical literature regarding the management of insomnia and the elderly found that considerable evidence of the effectiveness and lasting benefits of nondrug treatments for insomnia exist. Compared with the benzodiazepines, the nonbenzodiazepine sedative-hypnotics, such as zopiclone, offer few if any advantages in efficacy or tolerability in elderly persons. Newer agents such as the melatonin receptor agonists may be more suitable and effective for the management of chronic insomnia in elderly people. Long-term use of sedative-hypnotics for insomnia lacks an evidence base and is discouraged for reasons that include concerns about such potential adverse drug effects as cognitive impairment, daytime sedation, motor incoordination, and increased risk of motor vehicle accidents and falls. In addition, the effectiveness and safety of long-term use of nonbenzodiazepine hypnotic drugs remains to be determined.
Liver disease
Patients with liver disease eliminate zopiclone much more slowly than normal patients and in addition experience exaggerated pharmacological effects of the drug.Adverse reactions
Sleeping pills, including zopiclone, have been associated with an increased risk of death. The British National Formulary states adverse reactions as follows: "taste disturbance ; less commonly nausea, vomiting, dizziness, drowsiness, dry mouth, headache; rarely amnesia, confusion, depression, hallucinations, nightmares; very rarely light headedness, incoordination, paradoxical effects and sleep-walking also reported".Contraindications
Zopiclone causes impaired driving skills similar to those of benzodiazepines. Long-term users of hypnotic drugs for sleep disorders develop only partial tolerance to adverse effects on driving, with users of hypnotic drugs even after one year of use still showing an increased motor vehicle accident rate. Patients who drive motor vehicles should not take zopiclone as there is a significantly increased risk of accidents in zopiclone users. Zopiclone induces impairment of psychomotor function. Driving or operating machinery should be avoided after taking zopiclone as effects can carry over to the next day, including impaired hand-eye coordination.A double-blind study on the effect on performance of several hypnotic medications, relevant to military personnel who may have to be awakened to carry out duties, found that drugs listed in increasing order of performance impact duration were melatonin, zaleplon, temazepam, and zopiclone. The effects on serial reaction time, logical reasoning, serial subtraction, and multitask were measured. For zaleplon, zopiclone and temazepam respectively the times to recover normal performance for SRT were 3.25,, and 5.25 hours; for LRT 3.25,, and 4.25 hours; for SST 2.25,, and 4.25 hours; and for MT 2.25,, and 3.25 hours. The study did not consider the effectiveness of the drugs on sleep.
EEG and sleep
It causes similar alterations on EEG readings and sleep architecture as benzodiazepines and causes disturbances in sleep architecture on withdrawal as part of its rebound effect. Zopiclone reduces both delta waves and the number of high-amplitude delta waves whilst increasing low-amplitude waves. Zopiclone reduces the total amount of time spent in REM sleep as well as delaying its onset. In EEG studies, zopiclone significantly increases the energy of the beta frequency band, increasing stage 2. Zopiclone is less selective to the α1 site and has higher affinity to the α2 site than zaleplon. Zopiclone is therefore very similar pharmacologically to benzodiazepines.Overdose
Zopiclone is sometimes used as a method of suicide. It has a similar fatality index to that of benzodiazepine drugs, apart from temazepam, which is particularly toxic in overdose. Deaths have occurred from zopiclone overdose, alone or in combination with other drugs. Overdose of zopiclone may present with excessive sedation and depressed respiratory function that may progress to coma and possibly death. Zopiclone combined with alcohol, opiates, or other central nervous system depressants may be even more likely to lead to fatal overdoses. Zopiclone overdosage can be treated with the GABAA receptor benzodiazepine site antagonist flumazenil, which displaces zopiclone from its binding site, thereby rapidly reversing its effects. Serious effects on the heart may also occur from a zopiclone overdose when combined with piperazine.Death certificates show the number of zopiclone-related deaths is on the rise. When taken alone, it usually is not fatal, but when mixed with alcohol or other drugs such as opioids, or in patients with respiratory, or hepatic disorders, the risk of a serious and fatal overdose increases.
Interactions
Zopiclone also interacts with trimipramine and caffeine.Alcohol has an additive effect when combined with zopiclone, enhancing the adverse effects including the overdose potential of zopiclone significantly. Due to these risks and the increased risk for dependence, alcohol should be avoided when using zopiclone.
Erythromycin appears to increase the absorption rate of zopiclone and prolong its elimination half-life, leading to increased plasma levels and more pronounced effects. Itraconazole has a similar effect on zopiclone pharmacokinetics as erythromycin. The elderly may be particularly sensitive to the erythromycin and itraconazole drug interaction with zopiclone. Temporary dosage reduction during combined therapy may be required, especially in the elderly.
Rifampicin causes a very notable reduction in half-life of zopiclone and peak plasma levels, which results in a large reduction in the hypnotic effect of zopiclone. Phenytoin and carbamazepine may also provoke similar interactions. Ketoconazole and sulfaphenazole interfere with the metabolism of zopiclone. Nefazodone impairs the metabolism of zopiclone leading to increased zopiclone levels and marked next-day sedation.
Pharmacology
The therapeutic pharmacological properties of zopiclone include hypnotic, anxiolytic, anticonvulsant, and myorelaxant properties. Zopiclone and benzodiazepines bind to the same sites on GABAA receptors, causing an enhancement of the actions of GABA to produce the therapeutic and adverse effects of zopiclone. The metabolite of zopiclone desmethylzopiclone is also pharmacologically active, although it has predominately anxiolytic properties. One study found some slight selectivity for zopiclone on α1 and α5 subunits, although it is regarded as being unselective in its binding to GABAA receptors containing α1, α2, α3, and α5 subunits. Desmethylzopiclone has been found to have partial agonist properties, unlike the parent drug zopiclone, which is a full agonist. The mechanism of action of zopiclone is similar to benzodiazepines, with similar effects on locomotor activity and on dopamine and serotonin turnover.A meta-analysis of randomised controlled clinical trials that compared benzodiazepines to zopiclone or other Z drugs such as zolpidem and zaleplon has found few clear and consistent differences between zopiclone and the benzodiazepines in sleep onset latency, total sleep duration, number of awakenings, quality of sleep, adverse events, tolerance, rebound insomnia, and daytime alertness.
Zopiclone is in the cyclopyrrolone family of drugs. Other cyclopyrrolone drugs include suriclone. Zopiclone, although molecularly different from benzodiazepines, shares an almost identical pharmacological profile as benzodiazepines, including anxiolytic properties. Its mechanism of action is by binding to the benzodiazepine site and acting as a full agonist, which in turn positively modulates benzodiazepine-sensitive GABAA receptors and enhances GABA binding at the GABAA receptors to produce zopiclone's pharmacological properties. In addition to zopiclone's benzodiazepine pharmacological properties, it also has some barbiturate-like properties.