Anemophily
Anemophily or wind pollination is a form of pollination whereby pollen is distributed by wind. Almost all gymnosperms are anemophilous, as are many plants in the order Poales, including grasses, sedges, and rushes. Other common anemophilous plants are oaks, pecans, pistachios, sweet chestnuts, alders, hops, and members of the family Juglandaceae. Approximately 12% of plants across the globe are pollinated by anemophily, including cereal crops like rice and corn and other prominent crop plants like wheat, rye, barley, and oats. In addition, many pines, spruces, and firs are wind-pollinated.
Syndrome
Features of the wind-pollination syndrome include a lack of scent production, a lack of showy floral parts, reduced production of nectar, and the production of enormous numbers of pollen grains. This distinguishes them from entomophilous and zoophilous species.Anemophilous pollen grains are smooth, light, and non-sticky, so that they can be transported by air currents. Wind-pollinating plants have no predisposition to attract pollinating organisms. They freely expel a myriad of these pollen grains, and only a small percentage of them ends up captured by the female floral structures on wind-pollinated plants. They are typically in diameter, although the pollen grains of Pinus species can be much larger and much less dense. Anemophilous plants possess lengthy, well-exposed stamens to catch and distribute pollen. These stamens are exposed to wind currents and also have large, feathery stigma to easily trap airborne pollen grains. Pollen from anemophilous plants tends to be smaller and lighter than pollen from entomophilous ones, with very low nutritional value to insects due to their low protein content. However, insects sometimes gather pollen from staminate anemophilous flowers at times when higher-protein pollens from entomophilous flowers are scarce. Anemophilous pollens may also be inadvertently captured by bees' electrostatic field. This may explain why, though bees are not observed to visit ragweed flowers, its pollen is often found in honey made during the ragweed floral bloom. Other flowers that are generally anemophilous are observed to be actively worked by bees, with solitary bees often visiting grass flowers, and the larger honeybees and bumblebees frequently gathering pollen from corn tassels and other grains.
Anemophily is an adaptation that helps to separate the male and female reproductive systems of a single plant, reducing the effects of inbreeding. It often accompanies dioecy – the presence of male and female reproductive structures on separate plants. Anemophily is adaptively beneficial because it promotes outcrossing and thus the avoidance of inbreeding depression that can occur due to the expression of recessive deleterious mutations in inbred progeny plants.