Laws of Form
Laws of Form is a book by G. Spencer-Brown, published in 1969, that straddles the boundary between mathematics and philosophy. LoF describes three distinct logical systems:
- The primary arithmetic, whose models include Boolean arithmetic;
- The primary algebra, whose models include the two-element Boolean algebra, Boolean logic, and the classical propositional calculus;
- Equations of the second degree, whose interpretations include finite automata and Alonzo Church's Restricted Recursive Arithmetic.
The book
The preface states that the work was first explored in 1959, and Spencer Brown cites Bertrand Russell as being supportive of his endeavour. He also thanks J. C. P. Miller of University College London for helping with the proofreading and offering other guidance. In 1963 Spencer Brown was invited by Harry Frost, staff lecturer in the physical sciences at the department of Extra-Mural Studies of the University of London, to deliver a course on the mathematics of logic.LoF emerged from work in electronic engineering its author did around 1960. Key ideas of the LOF were first outlined in his 1961 manuscript Design with the Nor, which remained unpublished until 2021, and further refined during subsequent lectures on mathematical logic he gave under the auspices of the University of London's extension program. LoF has appeared in several editions. The second series of editions appeared in 1972 with the "Preface to the First American Edition", which emphasised the use of self-referential paradoxes, and the most recent being a 1997 German translation. LoF has never gone out of print.
LoF's mystical and declamatory prose and its love of paradox make it a challenging read for all. Spencer-Brown was influenced by Wittgenstein and R. D. Laing. LoF also echoes a number of themes from the writings of Charles Sanders Peirce, Bertrand Russell, and Alfred North Whitehead.
The work has had curious effects on some classes of its readership; for example, on obscure grounds, it has been claimed that the entire book is written in an operational way, giving instructions to the reader instead of telling them what "is", and that in accordance with G. Spencer-Brown's interest in paradoxes, the only sentence that makes a statement that something is, is the statement which says no such statements are used in this book. Furthermore, the claim asserts that except for this one sentence the book can be seen as an example of E-Prime. What prompted such a claim, is obscure, either in terms of incentive, logical merit, or as a matter of fact, because the book routinely and naturally uses the verb to be throughout, and in all its grammatical forms, as may be seen both in the original and in quotes shown below.
Reception
Ostensibly a work of formal mathematics and philosophy, LoF became something of a cult classic: it was praised by Heinz von Foerster when he reviewed it for the Whole Earth Catalog. Those who agree point to LoF as embodying an enigmatic "mathematics of consciousness", its algebraic symbolism capturing an implicit root of cognition: the ability to "distinguish". LoF argues that primary algebra reveals striking connections among logic, Boolean algebra, and arithmetic, and the philosophy of language and mind.Stafford Beer wrote in a review for Nature, "When one thinks of all that Russell went through sixty years ago, to write the Principia, and all we his readers underwent in wrestling with those three vast volumes, it is almost sad".
Banaschewski argues that the primary algebra is nothing but new notation for Boolean algebra. Indeed, the two-element Boolean algebra 2 can be seen as the intended interpretation of the primary algebra. Yet the notation of the primary algebra:
- Fully exploits the duality characterizing not just Boolean algebras but all lattices;
- Highlights how syntactically distinct statements in logic and 2 can have identical semantics;
- Dramatically simplifies Boolean algebra calculations, and proofs in sentential and syllogistic logic.
LoF has influenced, among others, Heinz von Foerster, Louis Kauffman, Niklas Luhmann, Humberto Maturana, Francisco Varela and William Bricken. Some of these authors have modified the primary algebra in a variety of interesting ways.
LoF claimed that certain well-known mathematical conjectures of very long standing, such as the four color theorem, Fermat's Last Theorem, and the Goldbach conjecture, are provable using extensions of the primary algebra. Spencer-Brown eventually circulated a purported proof of the four color theorem, but it was met with skepticism.
The form (Chapter 1)
The symbol:Also called the "mark" or "cross", is the essential feature of the Laws of Form. In Spencer-Brown's inimitable and enigmatic fashion, the Mark symbolizes the root of cognition, i.e., the dualistic Mark indicates the capability of differentiating a "this" from "everything else but this".
In LoF, a Cross denotes the drawing of a "distinction", and can be thought of as signifying the following, all at once:
- The act of drawing a boundary around something, thus separating it from everything else;
- That which becomes distinct from everything by drawing the boundary;
- Crossing from one side of the boundary to the other.
"The first command:can well be expressed in such ways as:
- Draw a distinction
Or:
- Let there be a distinction,
- Find a distinction,
- See a distinction,
- Describe a distinction,
- Define a distinction,
- Let a distinction be drawn".
The counterpoint to the Marked state is the Unmarked state, which is simply nothing, the void, or the un-expressable infinite represented by a blank space. It is simply the absence of a Cross. No distinction has been made and nothing has been crossed. The Marked state and the void are the two primitive values of the Laws of Form.
The Cross can be seen as denoting the distinction between two states, one "considered as a symbol" and another not so considered. From this fact arises a curious resonance with some theories of consciousness and language. Paradoxically, the Form is at once Observer and Observed, and is also the creative act of making an observation. LoF closes with the words:
...the first distinction, the Mark and the observer are not only interchangeable, but, in the form, identical.
C. S. Peirce came to a related insight in the 1890s; see.
The primary arithmetic (Chapter 4)
The syntax of the primary arithmetic goes as follows. There are just two atomic expressions:- The empty Cross Image:Laws of Form - cross.gif ;
- All or part of the blank page.
- A Cross Image:Laws of Form - cross.gif may be written over any expression;
- Any two expressions may be concatenated.
Let the "unmarked state" be a synonym for the void. Let an empty Cross denote the "marked state". To cross is to move from one value, the unmarked or marked state, to the other. We can now state the "arithmetical" axioms A1 and A2, which ground the primary arithmetic :
"A1. The law of Calling". Calling twice from a state is indistinguishable from calling once. To make a distinction twice has the same effect as making it once. For example, saying "Let there be light" and then saying "Let there be light" again, is the same as saying it once. Formally:
"A2. The law of Crossing". After crossing from the unmarked to the marked state, crossing again starting from the marked state returns one to the unmarked state. Hence recrossing annuls crossing. Formally:
In both A1 and A2, the expression to the right of '=' has fewer symbols than the expression to the left of '='. This suggests that every primary arithmetic expression can, by repeated application of A1 and A2, be simplified to one of two states: the marked or the unmarked state. This is indeed the case, and the result is the expression's "simplification". The two fundamental metatheorems of the primary arithmetic state that:
- Every finite expression has a unique simplification. ;
- Starting from an initial marked or unmarked state, "complicating" an expression by a finite number of repeated application of A1 and A2 cannot yield an expression whose simplification differs from the initial state..
A1 and A2 have loose analogs in the properties of series and parallel electrical circuits, and in other ways of diagramming processes, including flowcharting. A1 corresponds to a parallel connection and A2 to a series connection, with the understanding that making a distinction corresponds to changing how two points in a circuit are connected, and not simply to adding wiring.
The primary arithmetic is analogous to the following formal languages from mathematics and computer science:
- A Dyck language with a null alphabet;
- The simplest context-free language in the Chomsky hierarchy;
- A rewrite system that is strongly normalizing and confluent.