Type 1 diabetes


Type 1 diabetes, or type 1 diabetes mellitus, is an autoimmune disease that occurs when the body's immune system destroys beta cells in the pancreas that produce the hormone insulin. Insulin is required by the body to store and convert blood sugar into energy. T1D results in high blood sugar levels in the body prior to treatment. Common symptoms include frequent urination, increased thirst, increased hunger, weight loss, and other complications. Additional symptoms may include blurry vision, tiredness, and slow wound healing. While some cases take longer, symptoms usually appear within weeks or a few months.
The cause of type 1 diabetes is not completely understood, but it is believed to involve a combination of genetic and environmental factors. The underlying mechanism involves an autoimmune destruction of the insulin-producing beta cells in the pancreas. Diabetes is diagnosed by testing the level of sugar or glycated hemoglobin in the blood.
Type 1 diabetes can be distinguished from type 2 by testing for the presence of autoantibodies and/or declining levels/absence of C-peptide.
There is no known way to prevent type 1 diabetes. Treatment with insulin is required for survival. Insulin therapy is usually given by injection just under the skin but can also be delivered by an insulin pump. A diabetic diet, exercise, and lifestyle modifications are considered cornerstones of management. If left untreated, diabetes can cause many complications. Complications of relatively rapid onset include diabetic ketoacidosis and nonketotic hyperosmolar coma. Long-term complications include heart disease, stroke, kidney failure, foot ulcers, and damage to the eyes. Furthermore, since insulin lowers blood sugar levels, complications may arise from low blood sugar if more insulin is taken than necessary.
Type 1 diabetes makes up an estimated 5–10% of all diabetes cases. The number of people affected globally is unknown, although it is estimated that about 80,000 children develop the disease each year. Within the United States the number of people affected is estimated to be one to three million. Rates of disease vary widely, with approximately one new case per 100,000 per year in East Asia and Latin America and around 30 new cases per 100,000 per year in Scandinavia and Kuwait. It typically begins in children and young adults but can begin at any age.

Signs and symptoms

Type 1 diabetes can develop at any age, with a peak in onsets during childhood and adolescence. Adult onsets on the other hand are often initially misdiagnosed as type 2. The major sign of type 1 diabetes is very high blood sugar, which typically manifests in children as a few days to weeks of polyuria, polydipsia, and weight loss after being exposed to a triggering factor including infections, strenuous exercise, dehydration. Children may also experience increased appetite, blurred vision, bedwetting, recurrent skin infections, candidiasis of the perineum, irritability, and reduced mental acumen. Adults with type 1 diabetes tend to have more varied symptoms, which come on over months, rather than days or weeks.
Prolonged lack of insulin can cause diabetic ketoacidosis, characterized by fruity breath odor, mental confusion, persistent fatigue, dry or flushed skin, abdominal pain, nausea or vomiting, and labored breathing. Blood and urine tests reveal unusually high glucose and ketones in the blood and urine. Untreated ketoacidosis can rapidly progress to loss of consciousness, coma, and death. The percentage of children whose type 1 diabetes begins with an episode of diabetic ketoacidosis varies widely by geography, as low as 15% in parts of Europe and North America, and as high as 80% in the developing world.

Causes

Type 1 diabetes is caused by the destruction of β-cells—the only cells in the body that produce insulin—and the consequent progressive insulin deficiency. Without insulin, the body cannot respond effectively to increases in blood sugar. Due to this, people with diabetes have persistent hyperglycemia. In 70–90% of cases, β-cells are destroyed by one's own immune system, for reasons that are not entirely clear. The best-studied components of this autoimmune response are β-cell-targeted antibodies that begin to develop in the months or years before symptoms arise. Typically, someone will first develop antibodies against insulin or the protein GAD65, followed eventually by antibodies against the proteins IA-2, IA-2β, and/or ZNT8. People with a higher level of these antibodies, especially those who develop them earlier in life, are at higher risk for developing symptomatic type 1 diabetes. The trigger for the development of these antibodies remains unclear. Several explanatory theories have been put forward, and the cause may involve genetic susceptibility, a diabetogenic trigger, and/or exposure to an antigen. The remaining 10–30% of type 1 diabetics have β-cell destruction but no sign of autoimmunity; this is called idiopathic type 1 diabetes.

Environmental

Various environmental risks have been studied in an attempt to understand what triggers β-cell destroying autoimmunity. Many aspects of environment and life history are associated with slight increases in type 1 diabetes risk; however, the connection between each risk and diabetes often remains unclear. Type 1 diabetes risk is slightly higher for children whose mothers are obese or older than 35, or for children born by caesarean section. Similarly, a child's weight gain in the first year of life, total weight, and BMI are associated with slightly increased type 1 diabetes risk. Some dietary habits have also been associated with type 1 diabetes risk, namely consumption of cow's milk and dietary sugar intake. Animal studies and some large human studies have found small associations between type 1 diabetes risk and intake of gluten or dietary fiber; however, other large human studies have found no such association. Many potential environmental triggers have been investigated in large human studies and found to be unassociated with type 1 diabetes risk including duration of breastfeeding, time of introduction of cow milk into the diet, vitamin D consumption, blood levels of active vitamin D, and maternal intake of omega-3 fatty acids.
A longstanding hypothesis for an environmental trigger is that some viral infection early in life contributes to type 1 diabetes development. Much of this work has focused on enteroviruses, with some studies finding slight associations with type 1 diabetes, and others finding none. Large human studies have searched for, but not yet found an association between type 1 diabetes and various other viral infections, including infections of the mother during pregnancy. Conversely, some have postulated that reduced exposure to pathogens in the developed world increases the risk of autoimmune diseases, often called the hygiene hypothesis. Various studies of hygiene-related factors—including household crowding, daycare attendance, population density, childhood vaccinations, antihelminthic medication, and antibiotic use during early life or pregnancy—show no association with type 1 diabetes.

Genetics

Type 1 diabetes is partially caused by genetics, and family members of type 1 diabetics have a higher risk of developing the disease themselves. In the general population, the risk of developing type 1 diabetes is around 1 in 250. For someone whose parent has type 1 diabetes, the risk rises to 1–9%. If a sibling has type 1 diabetes, the risk is 6–7%. If someone's identical twin has type 1 diabetes, they have a 30–70% risk of developing it themselves.
About half of the disease's heritability is due to variations in three HLA class II genes involved in antigen presentation: HLA-DRB1, HLA-DQA1, and HLA-DQB1. The variation patterns associated with increased risk of type 1 diabetes are called HLA-DR3 and HLA-DR4-HLA-DQ8, and are common in people of European descent. A pattern associated with reduced risk of type 1 diabetes is called HLA-DR15-HLA-DQ6. Large genome-wide association studies have identified dozens of other genes associated with type 1 diabetes risk, mostly genes involved in the immune system.

Chemicals and drugs

Some medicines can reduce insulin production or damage β cells, resulting in a disease that resembles type 1 diabetes. The antiviral drug didanosine triggers pancreas inflammation in 5 to 10% of those who take it, sometimes causing lasting β-cell damage. Similarly, up to 5% of those who take the anti-protozoal drug pentamidine experience β-cell destruction and diabetes. Several other drugs cause diabetes by reversibly reducing insulin secretion, namely statins, the post-transplant immunosuppressants cyclosporin A and tacrolimus, the leukemia drug L-asparaginase, and the antibiotic gatifloxicin.

Post-operative changes

One cause of Type 1 diabetes is through surgery. This is due to the destruction or intentional removal of a portion of or the entire pancreas. This decreases the number of beta-islet cells capable of producing insulin greatly, resulting in an acquired form of Type 1 diabetes known as pancreatogenic diabetes mellitus. This type of diabetes is most often seen in patients that undergo a pancreatoduodenectomy or a total pancreatectomy.
Patients who undergo a total pancreatectomy are medically recognized as a "brittle diabetic". This nomenclature informs medical professionals that the patient has no insulin production and requires extensive monitoring to avoid severe hyperglycemia or hypoglycemia. Hypoglycemia is significantly more worrying in these patients due to the potential for coma and even death, as hyperglycemia causes more subtle damage over a longer period of time and only affects consciousness at severe levels. Many of these patients require an insulin pump that constantly injects insulin to reduce their sugar levels.

Diagnosis

Diabetes is typically diagnosed by a blood test showing unusually high blood sugar. The World Health Organization defines diabetes as blood sugar levels at or above 7.0 mmol/L after fasting for at least eight hours, or a glucose level at or above 11.1 mmol/L two hours after an oral glucose tolerance test. The American Diabetes Association additionally recommends a diagnosis of diabetes for anyone with symptoms of hyperglycemia and blood sugar at any time at or above 11.1 mmol/L, or glycated hemoglobin levels at or above 48 mmol/mol.
Once a diagnosis of diabetes is established, type 1 diabetes is distinguished from other types by a blood test for the presence of autoantibodies that target various components of the beta cell. The most commonly available tests detect antibodies against glutamic acid decarboxylase, the beta cell cytoplasm, or insulin, each of which is targeted by antibodies in around 80% of type 1 diabetics. Some healthcare providers also have access to tests for antibodies targeting the beta cell proteins IA-2 and ZnT8; these antibodies are present in around 58% and 80% of people with type 1 diabetes, respectively. Some also test for C-peptide, a byproduct of insulin synthesis. Very low C-peptide levels are suggestive of type 1 diabetes.
The median age of type 1 diabetes diagnosis in the United States is 24 years of age.