Trastuzumab
Trastuzumab, sold under the brand name Herceptin among others, is a monoclonal antibody used to treat breast cancer and stomach cancer. It is specifically used for cancer that is HER2 receptor positive. It may be used by itself or together with other chemotherapy medication. Trastuzumab is given by slow injection into a vein and injection just under the skin.
Common side effects include fever, infection, cough, headache, trouble sleeping, and rash. Other severe side effects include heart failure, allergic reactions, and lung disease. Use during pregnancy may harm the baby. Trastuzumab works by binding to the HER2 receptor and slowing down cell replication.
Trastuzumab was approved for medical use in the United States in September 1998, and in the European Union in August 2000. It is on the World Health Organization's List of Essential Medicines.
Medical uses
The safety and efficacy of trastuzumab-containing combination therapies for the treatment of metastatic breast cancer. The overall hazard ratios for overall survival and progression free survival were 0.82 and 0.61, respectively. It was difficult to accurately ascertain the true impact of trastuzumab on survival, as in three of the seven trials, over half of the patients in the control arm were allowed to cross-over and receive trastuzumab after their cancer began to progress. Thus, this analysis likely underestimates the true survival benefit associated with trastuzumab treatment in this population.In early-stage HER2-positive breast cancer, trastuzumab-containing regimens improved overall survival and disease-free survival. Increased risk of heart failure and decline in left ventricular ejection fraction were seen in these trials as well. Two trials involving shorter term treatment with trastuzumab did not differ in efficacy from longer trials, but produced less cardiac toxicity.
The original studies of trastuzumab showed that it improved overall survival in late-stage HER2-positive breast cancer from 20.3 to 25.1 months. In early-stage HER2-positive breast cancer, it reduces the risk of cancer returning after surgery. The absolute reduction in the risk of cancer returning within three years was 9.5%, and the absolute reduction in the risk of death within 3 years was reduced by 3%. However, it increases serious heart problems by an absolute risk of 2.1%, though the problems may resolve if treatment is stopped.
Trastuzumab has had a "major impact in the treatment of HER2-positive metastatic breast cancer." The combination of trastuzumab with chemotherapy has been shown to increase both survival and response rate, in comparison to trastuzumab alone.
It is possible to determine the "erbB2 status" of a tumor, which can be used to predict efficacy of treatment with trastuzumab. If it is determined that a tumor is overexpressing the erbB2 oncogene and the patient has no significant pre-existing heart disease, then a patient is eligible for treatment with trastuzumab. It is surprising that although trastuzumab has great affinity for HER2 and high doses can be administered, 70% of HER2+ patients do not respond to treatment. In fact resistance to the treatment develops rapidly, in virtually all patients. A mechanism of resistance involves failure to downregulate p27Kip1 as well as suppressing p27 translocation to the nucleus in breast cancer, enabling cdk2 to induce cell proliferation.
In May 2021, the FDA approved pembrolizumab in combination with trastuzumab, fluoropyrimidine- and platinum-containing chemotherapy for the first-line treatment of people with locally advanced unresectable or metastatic HER2 positive gastric or gastroesophageal junction adenocarcinoma.
Duration of treatment
The optimal duration of add-on trastuzumab treatment after surgery for early breast cancer is unknown. One year of treatment is generally accepted based on clinical trial evidence that demonstrated the superiority of one-year treatment over none. However, a small Finnish trial also showed similar improvement with nine weeks of treatment over no therapy. Because of the lack of direct head-to-head comparison in clinical trials, it is unknown whether a shorter duration of treatment may be just as effective than the accepted practice of treatment for one year. Debate about treatment duration has become a relevant issue for many public health policy makers because administering trastuzumab for a year is very expensive. Consequently, some countries with a taxpayer-funded public health system, such as New Zealand, chose to fund limited adjuvant therapy. However, subsequently New Zealand has revised its policy and now funds trastuzumab treatment for up to 12 months.Adverse effects
Some of the common side effects of trastuzumab are flu-like symptoms, nausea and diarrhea.One of the more serious complications of trastuzumab is its effect on the heart, although this is rare. In 2–7% of cases, trastuzumab is associated with cardiac dysfunction, which includes congestive heart failure. As a result, regular cardiac screening with either a MUGA scan or echocardiography is commonly undertaken during the trastuzumab treatment period. The decline in ejection fraction appears to be reversible.
Trastuzumab downregulates neuregulin-1, which is essential for the activation of cell survival pathways in cardiomyocytes and the maintenance of cardiac function. NRG-1 activates the MAPK pathway and the PI3K/AKT pathway as well as focal adhesion kinases. These are all significant for the function and structure of cardiomyocytes. Trastuzumab can therefore lead to cardiac dysfunction.
Trastuzumab may harm a developing fetus.
Mechanism of action
The HER2 gene is amplified in 20–30% of early-stage breast cancers. Trastuzumab is a monoclonal antibody targeting HER2, inducing an immune-mediated response that causes internalization and recycling of HER2. It may also upregulate cell cycle inhibitors such as p21Waf1 and p27Kip1.The HER2 pathway promotes cell growth and division when it is functioning normally; however, when it is overexpressed, cell growth accelerates beyond its normal limits. In some types of cancer, the pathway is exploited to promote rapid cell growth and proliferation and hence tumor formation. The EGF pathway includes the receptors HER1, HER2, HER3, and HER4; the binding of ligands to HER receptors is required to activate the pathway. The pathway initiates the MAP kinase pathway as well as the PI3 kinase/AKT pathway, which in turn activates the NF-κB pathway. In cancer cells the HER2 protein can be expressed up to 100 times more than in normal cells.
The HER receptors are proteins that are embedded in the cell membrane and communicate molecular signals from outside the cell to inside the cell, and turn genes on and off. The HER protein, binds to human epidermal growth factor, and stimulates cell proliferation. In some cancers, notably certain types of breast cancer, HER2 is over-expressed and causes cancer cells to reproduce uncontrollably.
HER2 is localized at the cell surface, and carries signals from outside the cell to the inside. Signaling compounds called mitogens arrive at the cell membrane, and bind to the extracellular domain of the HER family of receptors. Those bound proteins then link, activating the receptor. HER2 sends a signal from its intracellular domain, activating several different biochemical pathways. These include the PI3K/Akt pathway and the MAPK pathway. Signals on these pathways promote cell proliferation and the growth of blood vessels to nourish the tumor. ERBB2 is the preferred dimerization partner for the other family members and ERBB2 heterodimers signaling is stronger and longer acting compared to heterodimers between other ERBB members. It has been reported that Trastuzumab induces the formation of complementarity-determining regions leading to surface redistribution of ERBB2 and EGFR in CDRs and that the ERBB2-dependent MAPK phosphorylation and EGFR/ERBB1 expression are both required for CDR formation. CDR formation requires activation of both the protein regulator of actin polymerization N-WASP, mediated by ERK1/2, and of the actin-depolymerizing protein cofilin, mediated by EGFR/ERBB1. Furthermore, this latter event may be inhibited by the negative cell motility regulator p140Cap, as we found that p140Cap overexpression led to cofilin deactivation and inhibition of CDR formation.
Normal cell division—mitosis—has checkpoints that keep cell division under control. Some of the proteins that control this cycle are called cdk2. Overexpression of HER2 sidesteps these checkpoints, causing cells to proliferate in an uncontrolled fashion.
Trastuzumab binds to domain IV of the extracellular segment of the HER2/neu receptor. Monoclonal antibodies that bind to this region have been shown to reverse the phenotype of HER2/neu expressing tumor cells. Cells treated with trastuzumab undergo arrest during the G1 phase of the cell cycle so there is reduced proliferation. It has been suggested that trastuzumab does not alter HER-2 expression, but downregulates activation of AKT. In addition, trastuzumab suppresses angiogenesis both by induction of antiangiogenic factors and repression of proangiogenic factors. It is thought that a contribution to the unregulated growth observed in cancer could be due to proteolytic cleavage of HER2/neu that results in the release of the extracellular domain. One of the most relevant proteins that trastuzumab activates is the tumor suppressor p27Kip1, also known as CDKN1B. Trastuzumab has been shown to inhibit HER2/neu ectodomain cleavage in breast cancer cells.
Experiments in laboratory animals indicate that antibodies, including trastuzumab, when bound to a cell, induce immune cells to kill that cell, and that such antibody-dependent cell-mediated cytotoxicity is another important mechanism of action.