Transparency (data compression)
In data compression and psychoacoustics, transparency is the result of lossy data compression advanced enough that the compressed result is perceptually indistinguishable from the uncompressed input, i.e., perceptually lossless.
A transparency threshold is a given value at which transparency is reached. It is commonly used to describe compressed data bitrates. For example, the transparency threshold for MP3 to linear PCM audio is said to be between 175 and 245 kbit/s, at 44.1 kHz, when encoded as VBR MP3. This means that when an MP3 that was encoded at those bitrates is being played back, it is indistinguishable from the original PCM, and the compression is transparent to the listener.
The term transparent compression can also refer to a filesystem feature that allows compressed files to be read and written just like regular ones. In this case, the compressor is typically a general-purpose lossless compressor.
Determination
Transparency, like sound or video quality, is subjective. It depends most on the listener's familiarity with digital artifacts, their awareness that artifacts may in fact be present, and to a lesser extent, the compression method, bit rate used, input characteristics, and the listening or viewing conditions and equipment. Despite this, sometimes general consensus is formed for what compression options "should" provide transparent results for most people on most equipment. Due to the subjectivity and the changing nature of compression, recording, and playback technology, such opinions should be considered only as rough estimates rather than established fact.Judging transparency can be difficult, due to observer bias, in which subjective like or dislike of a certain compression methodology emotionally influences their judgment. This bias is commonly referred to as placebo, although this usage is slightly different from the medical use of the term.
To scientifically prove that a compression method is not transparent, double-blind tests may be useful. The ABX method is normally used, with a null hypothesis that the samples tested are the same and with an alternative hypothesis that the samples are in fact different.
All lossless data compression methods are transparent, by nature.