Pharmacokinetics of estradiol


The pharmacology of estradiol, an estrogen medication and naturally occurring steroid hormone, concerns its pharmacodynamics, pharmacokinetics, and various routes of administration.
Estradiol is a naturally occurring and bioidentical estrogen, or an agonist of the estrogen receptor, the biological target of estrogens like endogenous estradiol. Due to its estrogenic activity, estradiol has antigonadotropic effects and can inhibit fertility and suppress sex hormone production in both women and men. Estradiol differs from non-bioidentical estrogens like conjugated estrogens and ethinylestradiol in various ways, with implications for tolerability and safety.
Estradiol can be taken by mouth, held under the tongue, as a gel or patch that is applied to the skin, in through the vagina, by injection into muscle or fat, or through the use of an implant that is placed into fat, among other routes.

Routes of administration

Estradiol can be taken by a variety of different routes of administration. These include oral, buccal, sublingual, intranasal, transdermal, vaginal, rectal, by intramuscular or subcutaneous injection, and as a subcutaneous implant. The pharmacokinetics of estradiol, including its bioavailability, metabolism, biological half-life, and other parameters, differ by route of administration. Likewise, the potency of estradiol, and its local effects in certain tissues, most importantly the liver, differ by route of administration as well. In particular, the oral route is subject to a high first-pass effect, which results in high levels of estradiol and consequent estrogenic effects in the liver and low potency due to first-pass hepatic and intestinal metabolism into metabolites like estrone and estrogen conjugates. Conversely, this is not the case for parenteral routes, which bypass the intestines and liver.
Different estradiol routes and dosages can achieve widely varying circulating estradiol levels. For purposes of comparison with normal physiological circumstances, menstrual cycle circulating levels of estradiol in premenopausal women are 40 pg/mL in the early follicular phase, 250 pg/mL at the middle of the cycle, and 100 pg/mL during the mid-luteal phase. Mean integrated levels of circulating estradiol in premenopausal women across the whole menstrual cycle are in the range of 80 to 150 pg/mL, according to some sources. In postmenopausal women, circulating levels of estradiol are below 15 pg/mL. During normal human pregnancy, estrogen production increases progressively and extremely high estrogen levels are attained. Estradiol levels range from 1,000 to 40,000 pg/mL across pregnancy, are on average 25,000 pg/mL at term, and reach levels as high as 75,000 pg/mL in some women.

Oral administration

Absorption and bioavailability

The oral bioavailability of estradiol is very low. This is due to the fact that estradiol is poorly soluble in water, which limits its dissolution and absorption, and is additionally subject to extensive metabolism during the first pass through the intestines and liver. Estradiol is micronized and/or conjugated with an ester, as in estradiol valerate or estradiol acetate, to improve its oral bioavailability and potency. Micronization decreases the particle size of estradiol crystals and hence increases the surface area for absorption, thereby improving the rate and extent of absorption. In addition, there is an improvement in metabolic stability. Oral micronized estradiol consists of more than 80% of estradiol particles micronized to a size smaller than 20 μm in diameter, or to about 1 to 3 μm on average. All oral formulations of estradiol available today are micronized, and oral estradiol valerate tablets also seem to be micronized.
Oral non-micronized estradiol and oral micronized estradiol do not appear to have ever been directly compared in a study. Both have been assessed independently however, and have been found to produce significant estrogenic effects. Micronization of other poorly water-soluble steroids such as spironolactone and norethisterone acetate has been found to increase their potency by several-fold. In accordance, studies of the amount of oral estradiol necessary for endometrial proliferation in women have reported a total dose of 60 mg for micronized estradiol relative to 120 to 300 mg or more for non-micronized estradiol. As such, micronization has been said to substantially improve the potency of oral estradiol.
A study compared different particle sizes of oral micronized estradiol. A preparation with the smallest particles was found to have the most rapid absorption and the highest bioavailability. However, a sharp peak in estradiol levels, without an accompanying rise in estrone levels, was observed during the first 2 hours with this particle size. It was suggested that the smallest estradiol particles may have been absorbed by the lymphatic system, partially bypassing first-pass metabolism and resulting in very high initial estradiol levels. The preparations with the larger particle sizes were found to be absorbed more slowly, without a pronounced initial peak in estradiol levels. Levels of estradiol were more even and similar to physiological levels with these particle sizes. Differences in area-under-the-curve estradiol levels with the different particle sizes were relatively small. As such, micronization may improve absorption but does not necessarily improve therapeutic effect.
Micronized estradiol is rapidly and completely absorbed with oral administration. This is true for oral doses of 2 mg and 4 mg, but absorption was found to be incomplete for an oral dose of 8 mg. This dose showed 76% of the expected bioavailability based on dose proportionality and area-under-the-curve levels, indicating a small deviation from linearity. The absolute bioavailability of oral micronized estradiol is approximately 5%, with a possible range of 0.1% to 12%. As such, the bioavailability of oral estradiol is very low even with micronization. There is high interindividual variability in the levels of estradiol achieved with oral estradiol, which is likely related to the high first-pass effect. This variation has been reported to be in the range of 28 to 127%, or about 4.6-fold maximal difference in levels between individuals, in terms of mean area-under-the-curve levels of estradiol.
In postmenopausal women, a dosage of 1 mg/day oral micronized estradiol has been found to produce circulating concentrations of 30 to 50 pg/mL estradiol and 150 to 300 pg/mL estrone, while a dosage of 2 mg/day has been found to result in circulating levels of 50 to 180 pg/mL estradiol and 300 to 850 pg/mL estrone. A study of oral micronized estradiol in transgender women found that mean estradiol levels across a dosage range of 1 to 8 mg/day were about 50 pg/mL at 1 mg/day, 100 pg/mL at 4 mg/day, and 150 pg/mL at 8 mg/day, with a wide degree of variation. In another study, mean estradiol levels at steady state with 4 mg/day and 6 mg/day oral micronized estradiol were approximately 180 pg/mL and 265 pg/mL, respectively. A study that used high to very high-dose oral micronized estradiol in postmenopausal women found that steady-state estradiol levels with 6 mg/day were about 300 pg/mL and with 30 mg/day were about 2,400 pg/mL.
Estradiol valerate is rapidly hydrolyzed into estradiol in the intestines. For this reason, oral estradiol and oral estradiol valerate have very similar pharmacokinetics. Due to the presence of its valeric acid ester and differences in molecular weight, estradiol valerate contains about 76% of the same amount of estradiol by weight. As a result, 2 mg oral estradiol valerate produces equivalent estradiol levels to about 1.5 mg oral estradiol.

Metabolism and elimination

When taken orally, about 95% of a dose of estradiol is metabolized in the intestines and liver into estrone and estrogen conjugates such as estrone sulfate, estrone glucuronide, and estradiol sulfate, among others, prior to entering the circulation. As a result, circulating estrone and estrogen conjugate levels are markedly elevated, in a highly unphysiological manner, with oral estradiol. Whereas the ratio of circulating estradiol to estrone is about 1:1 in premenopausal women and with transdermal estradiol, oral estradiol produces a ratio of about 1:5 on average and as high as 1:20 in some women. In addition, whereas levels of estradiol with menopausal replacement dosages of oral estradiol are in the range of the follicular phase of the normal menstrual cycle, levels of estrone resemble those during the first trimester of pregnancy. Moreover, whereas normal physiological estrone sulfate levels are 10 to 25 times higher than those of estradiol and estrone in premenopausal women, levels of estrone sulfate with oral estradiol are an additional 8 to 20 times higher than normal premenopausal or postmenopausal estrone sulfate levels. One study found that estrone sulfate levels were 200-fold higher than estradiol levels with 2 mg/day oral micronized estradiol or oral estradiol valerate, and estrone sulfate levels can reach up to nearly 1,000-fold higher concentrations than estradiol in some cases. In contrast to oral estradiol, due to the lack of the first pass, an excess in estrone and estrogen conjugate levels does not occur with transdermal estradiol or other parenteral estradiol routes.
The transformation of estradiol into estrone and estrogen conjugates is reversible. As such, these metabolites can be converted back into estradiol. About 15% of orally administered estradiol is transformed into estrone and 65% into estrone sulfate. About 5% of estrone and 1.4% of estrone sulfate is converted back into estradiol. An additional 21% of estrone sulfate is converted into estrone, whereas transformation of estrone into estrone sulfate is approximately 54%. The interconversion between estradiol and estrone is mediated by 17β-hydroxysteroid dehydrogenases, whereas the conversion of estrone into estrone sulfate is mediated by estrogen sulfotransferases and the transformation of estrone sulfate into estrone by steroid sulfatase. The metabolic clearance rates and hence blood half-lives of estrogen conjugates like estrone sulfate are much longer than those of estradiol and estrone. Estrogen conjugates, primarily estrone sulfate, serve as a large circulating reservoir for estradiol, and because of this, they function to greatly extend the biological half-life of oral estradiol. As such, the biological half-life of oral estradiol is a composite parameter that is dependent on interconversion between estradiol and estrogen conjugates, as well as on enterohepatic recirculation. Whereas the biological half-life of estradiol given by intravenous injection is about 0.5 to 2 hours, the biological half-life of oral estradiol has a range of 13 to 20 hours due to the large and long-lasting pool of estrogen conjugates that is formed during first-pass metabolism and that serves to continuously replenish circulating estradiol levels.