Thrips


Thrips are minute, slender insects with fringed wings and unique asymmetrical mouthparts. Entomologists have described approximately 7,700 species. They fly only weakly and their feathery wings are unsuitable for conventional flight; instead, thrips exploit an unusual mechanism, [|clap and fling], to create lift using an unsteady circulation pattern with transient vortices near the wings.
Thrips are a functionally diverse group; many of the known species are fungivorous. A small proportion of the species are serious pests of commercially important crops. Some of these serve as vectors for over 20 viruses that cause plant disease, especially the Tospoviruses. Many flower-dwelling species bring benefits as pollinators, with some predatory thrips feeding on small insects or mites. In the right conditions, such as in greenhouses, invasive species can exponentially increase in population size and form large swarms because of a lack of natural predators coupled with their ability to reproduce asexually, making them destructive to crops. Their identification to species by standard morphological characteristics is often challenging.

Naming and etymology

The first recorded mention of thrips dates from the 17th century, and a sketch was made by Philippo Bonanni, a Catholic priest, in 1691. Swedish entomologist Baron Charles De Geer described two species in the genus Physapus in 1744, and Linnaeus in 1746 added a third species and named this group of insects Thrips. In 1836 the Irish entomologist Alexander Henry Haliday described 41 species in 11 genera and proposed the order name of Thysanoptera. The first monograph on the group was published in 1895 by Heinrich Uzel, who is regarded by Fedor et al. as the father of Thysanoptera studies.
The generic and English name thrips is a direct transliteration of the Ancient Greek word, thrips, meaning "woodworm". Like some other animal-names in English the word "thrips" expresses both the singular and plural, so there may be many thrips or a single thrips. Other common names for thrips include thunderflies, thunderbugs, storm flies, thunderblights, storm bugs, corn fleas, corn flies, corn lice, freckle bugs, harvest bugs, and physopods. The older group name "physopoda" references the bladder-like tips to the tarsi of the legs. The name of the order, Thysanoptera, is constructed from the ancient Greek words, thysanos, "tassel or fringe", and, pteron, "wing", with reference to the insects' fringed wings.

Morphology

Thrips are small hemimetabolic insects with a distinctive cigar-shaped body plan. They are elongated with transversely constricted bodies. They range in size from in length for the larger predatory thrips, but most thrips are about 1 mm in length. Flight-capable thrips have two similar, strap-like pairs of wings with a fringe of bristles. The wings are folded back over the body at rest. Their legs usually end in two tarsal segments with a bladder-like structure known as an "arolium" at the pretarsus. This structure can be everted by means of hemolymph pressure, enabling the insect to walk on vertical surfaces. They have compound eyes consisting of a small number of ommatidia and three ocelli or simple eyes on the head.
Thrips have asymmetrical mouthparts unique to the group. Unlike the Hemiptera, the right mandible of thrips is reduced and vestigial – and in some species completely absent.
The left mandible is used briefly to cut into the food plant; saliva is injected and the maxillary stylets, which form a tube, are then inserted and the semi-digested food pumped from ruptured cells. This process leaves cells destroyed or collapsed, and a distinctive silvery or bronze scarring on the surfaces of the stems or leaves where the thrips have fed. The mouthparts of thrips have been described as "rasping-sucking", "punching and sucking", or, simply just a specific type of "piercing-sucking" mouthparts.
Thysanoptera is divided into two suborders, Terebrantia and Tubulifera; these can be distinguished by morphological, behavioral, and developmental characteristics. Tubulifera consists of a single family, Phlaeothripidae; members can be identified by their characteristic tube-shaped apical abdominal segment, egg-laying atop the surface of leaves, and three "pupal" stages. In the Phlaeothripidae, the males are often larger than females and a range of sizes may be found within a population. The largest recorded phlaeothripid species is about 14 mm long. Females of the eight families of the Terebrantia all possess the eponymous saw-like ovipositor on the anteapical abdominal segment, lay eggs singly within plant tissue, and have two "pupal" stages. In most Terebrantia, the males are smaller than females. The family Uzelothripidae has a single species and it is unique in having a whip-like terminal antennal segment.

Evolution

The earliest fossils of thrips date back to the Permian Permothrips longipennis, although it is probably not a member of this group. By the Early Cretaceous, true thrips became much more abundant. The extant family Merothripidae most resembles these ancestral Thysanoptera, and is probably basal to the order. There are currently over six thousand species of thrips recognized, grouped into 777 extant and sixty fossil genera. Some thrips were pollinators of the Ginkgoales as early as 110-105 Mya, in the Cretaceous. Cenomanithrips primus, Didymothrips abdominalis and Parallelothrips separatus are known from Myanmar amber of Cenomanian age.

Phylogeny

Thrips are generally considered to be the sister group to Hemiptera. The phylogeny of thrips families has been little studied. A preliminary analysis in 2013 of 37 species using 3 genes, as well as a phylogeny based on ribosomal DNA and three proteins in 2012, supports the monophyly of the two suborders, Tubulifera and Terebrantia. In Terebrantia, Melanothripidae may be sister to all other families, but other relationships remain unclear. In Tubulifera, the Phlaeothripidae and its subfamily Idolothripinae are monophyletic. The two largest thrips subfamilies, Phlaeothripinae and Thripinae, are paraphyletic and need further work to determine their structure. The internal relationships from these analyses are shown in the cladogram.

Taxonomy

The following families are recognized:
  • Suborder Terebrantia File:Frankadult.jpg|thumb|upright |Adult Franklinothrips vespiformis, a widely distributed tropical species
  • Suborder Tubulifera
The identification of thrips to species is challenging as types are maintained as slide preparations of varying quality over time. There is also considerable variability leading to many species being misidentified. Molecular sequence based approaches have increasingly been applied to their identification.

Biology

Feeding

Thrips are believed to have descended from a fungus-feeding ancestor during the Mesozoic, and many groups still feed upon and inadvertently redistribute fungal spores. These live among leaf litter or on dead wood and are important members of the ecosystem, their diet often being supplemented with pollen. Other species are primitively eusocial and form plant galls, while still others are predatory on mites and other thrips. Two species of Aulacothrips, A. tenuis and A. levinotus, have been found to be ectoparasites on aetalionid and membracid plant-hoppers in Brazil. Akainothrips francisi of Australia is a parasite within the colonies of another thrips species Dunatothrips aneurae that makes silken nests or domiciles on Acacia trees. A number of thrips in the subfamily Phlaeothripinae that specialize on Acacia hosts produce silk with which they glue together phyllodes to form domiciles inside which their semi-social colonies live.
Mirothrips arbiter has been found in paper wasp nests in Brazil. The eggs of the hosts including Mischocyttarus atramentarius, Mischocyttarus cassununga and Polistes versicolor are eaten by the thrips. Thrips, especially in the family Aeolothripidae, are also predators, and are considered beneficial in the management of pests like the codling moths.
Most research has focused on thrips species that feed on economically significant crops. Some species are predatory, but most of them feed on pollen and the chloroplasts harvested from the outer layer of plant epidermal and mesophyll cells. They prefer tender parts of the plant, such as buds, flowers and new leaves. Besides feeding on plant tissues, the common blossom thrips feeds on pollen grains and on the eggs of mites. When the larva supplements its diet in this way, its development time and mortality is reduced, and adult females that consume mite eggs increase their fecundity and longevity.

Pollination

Some flower-feeding thrips pollinate the flowers they are feeding on, and some authors suspect that they may have been among the first insects to evolve a pollinating relationship with their host plants. Amber fossils of Gymnopollisthrips from the Early Cretaceous show them to be coated in Cycadopites-like pollen. Scirtothrips dorsalis carries pollen of commercially important chili peppers. Darwin found that thrips could not be kept out by any netting when he conducted experiments by keeping away larger pollinators.Thrips setipennis is the sole pollinator of Wilkiea huegeliana, a small, unisexual annually flowering tree or shrub in the rainforests of eastern Australia. T. setipennis serves as an obligate pollinator for other Australian rainforest plant species, including Myrsine howittiana and M. variabilis. The genus Cycadothrips is a specialist pollinator of cycads, which are normally wind pollinated but some species of Macrozamia are able to attract thrips to male cones at some times and repel them so that they move to female cones. Thrips are likewise the primary pollinators of heathers in the family Ericaceae, and play a significant role in the pollination of pointleaf manzanita. Electron microscopy has shown thrips carrying pollen grains adhering to their backs, and their fringed wings allow them to fly from plant to plant.