Terahertz radiation


Terahertz radiation - also known as submillimeter radiation, terahertz waves, tremendously high frequency, T-rays, T-waves, T-light, T-lux or THz – consists of electromagnetic waves within the International Telecommunication Union-designated band of frequencies from 0.1 to 10 terahertz,, although the upper boundary is somewhat arbitrary and has been considered by some sources to be 30 THz.
One terahertz is 1012 Hz or 1,000 GHz. Wavelengths of radiation in the decimillimeter band correspondingly range 1 mm to 0.1 mm = 100 μm and those in the terahertz band 3 mm = 3000 μm to 30 μm. Because terahertz radiation begins at a wavelength of around 1 millimeter and proceeds into shorter wavelengths, it is sometimes known as the submillimeter band, and its radiation as submillimeter waves, especially in astronomy. This band of electromagnetic radiation lies within the transition region between microwave and far infrared and can be regarded as either.
Compared to lower radio frequencies, terahertz radiation is strongly absorbed by the gases of the atmosphere, and in air, most of the energy is attenuated within a few meters, so it is not practical for long distance terrestrial radio communication. It can penetrate thin layers of materials but is blocked by thicker objects. THz beams transmitted through materials can be used for material characterization, layer inspection, relief measurement, and as a lower-energy alternative to X-rays for producing high resolution images of the interior of solid objects.
Terahertz radiation occupies a middle ground where the ranges of microwaves and infrared light waves overlap, known as the "terahertz gap"; it is called a "gap" because the technology for its generation and manipulation is still in its infancy. The generation and modulation of electromagnetic waves in this frequency range ceases to be possible by the conventional electronic devices used to generate radio waves and microwaves, requiring the development of new devices and techniques.

Description

Terahertz radiation falls in between infrared radiation and microwave radiation in the electromagnetic spectrum, and it shares some properties with each of these. Terahertz radiation travels in a line of sight and is non-ionizing. Like microwaves, terahertz radiation can penetrate a wide variety of non-conducting materials; clothing, paper, cardboard, wood, masonry, plastic and ceramics. The penetration depth is typically less than that of microwave radiation. Like infrared, terahertz radiation has limited penetration through fog and clouds and cannot penetrate liquid water or metal. Terahertz radiation can penetrate some distance through body tissue like x-rays, but unlike them is non-ionizing, so it is of interest as a replacement for medical X-rays. Due to its longer wavelength, images made using terahertz waves have lower resolution than X-rays and need to be enhanced.
The earth's atmosphere is a strong absorber of terahertz radiation, so the range of terahertz radiation in air is limited to tens of meters, making it unsuitable for long-distance communications. However, at distances of ~10 meters the band may still allow many useful applications in imaging and construction of high bandwidth wireless networking systems, especially indoor systems. In addition, producing and detecting coherent terahertz radiation remains technically challenging, though inexpensive commercial sources now exist in the 0.3-1.0 THz range, including gyrotrons, backward wave oscillators, and resonant-tunneling diodes. Due to the small energy of THz photons, current THz devices require low temperature during operation to suppress environmental noise. Tremendous efforts thus have been put into THz research to improve the operation temperature, using different strategies such as optomechanical meta-devices.

Natural

Terahertz radiation is emitted as part of the black-body radiation from anything with a temperature greater than about 2 kelvin. While this thermal emission is very weak, observations at these frequencies are important for characterizing cold 10-20 K cosmic dust in interstellar clouds in the Milky Way galaxy, and in distant starburst galaxies.
Telescopes operating in this band include the James Clerk Maxwell Telescope, the Caltech Submillimeter Observatory and the Submillimeter Array at the Mauna Kea Observatory in Hawaii, the BLAST balloon borne telescope, the Herschel Space Observatory, the Heinrich Hertz Submillimeter Telescope at the Mount Graham International Observatory in Arizona, and at the Atacama Large Millimeter Array. Due to Earth's atmospheric absorption spectrum, the opacity of the atmosphere to submillimeter radiation restricts these observatories to very high altitude sites, or to space.

Artificial

, viable sources of terahertz radiation are the gyrotron, the backward wave oscillator, the molecule gas far-infrared laser, Schottky-diode multipliers, varactor multipliers, quantum-cascade laser, the free-electron laser, synchrotron light sources, photomixing sources, single-cycle or pulsed sources used in terahertz time-domain spectroscopy such as photoconductive, surface field, photo-Dember and optical rectification emitters, and electronic oscillators based on resonant tunneling diodes have been shown to operate up to 1.98 THz. To the right, image of Dendrimer Dipole Excitation Mechanism for broadband 30THz emitter used for sub-nanometer 3D Imaging and Spectroscopy.
There have also been solid-state sources of millimeter and submillimeter waves for many years. AB Millimeter in Paris, for instance, produces a system that covers the entire range from 8 GHz to 1,000 GHz with solid state sources and detectors. Nowadays, most time-domain work is done via ultrafast lasers.
In mid-2007, scientists at the U.S. Department of Energy's Argonne National Laboratory, along with collaborators in Turkey and Japan, announced the creation of a compact device that could lead to portable, battery-operated terahertz radiation sources. The device uses high-temperature superconducting crystals, grown at the University of Tsukuba in Japan. These crystals comprise stacks of Josephson junctions, which exhibit a property known as the Josephson effect: when external voltage is applied, alternating current flows across the junctions at a frequency proportional to the voltage. This alternating current induces an electromagnetic field. A small voltage can induce frequencies in the terahertz range.
In 2008, engineers at Harvard University achieved room temperature emission of several hundred nanowatts of coherent terahertz radiation using a semiconductor source. THz radiation was generated by nonlinear mixing of two modes in a mid-infrared quantum cascade laser. Previous sources had required cryogenic cooling, which greatly limited their use in everyday applications.
In 2009, it was discovered that the act of unpeeling adhesive tape generates non-polarized terahertz radiation, with a narrow peak at 2 THz and a broader peak at 18 THz. The mechanism of its creation is tribocharging of the adhesive tape and subsequent discharge; this was hypothesized to involve bremsstrahlung with absorption or energy density focusing during dielectric breakdown of a gas.
In 2013, researchers at Georgia Institute of Technology's Broadband Wireless Networking Laboratory and the Polytechnic University of Catalonia developed a method to create a graphene antenna: an antenna that would be shaped into graphene strips from 10 to 100 nanometers wide and one micrometer long. Such an antenna could be used to emit radio waves in the terahertz frequency range.

Terahertz gap

Until the 2008 manufacture of an EO Dipole Dendrimer Excitation emitter, no practical technologies existed for generating and detecting radiation in a frequency band in the THz region, known as the "terahertz gap". This gap has previously been defined as 0.1 to 10 THz although the upper boundary is considered by some sources as 30 THz. Until the 2008 DDE implementation by Applied Research & Photonics Inc., frequencies within the range from 0.1 to 30THz, useful power generation and receiver technologies were inefficient and unfeasible. Since 2008, ARP has commercially manufactured sub-nanometer resolution 3D Imaging & Spectroscopy tools, known as TeraSpectra.
Mass production of devices in this range and operation at room temperature are mostly impractical. This leaves a gap between mature microwave technologies in the highest frequencies of the radio spectrum and the well-developed optical engineering of infrared detectors in their lowest frequencies. This radiation is mostly used in small-scale, specialized applications such as submillimetre astronomy. Research that attempts to resolve this issue has been conducted since the late 20th century.
In 2024, an experiment was published by German researchers where a TDLAS experiment at 4.75 THz was performed in "infrared quality" with an uncooled pyroelectric receiver. The THz source was a cw DFB-QC-Laser operating at 43.3 K, with laser currents between 480 mA and 600 mA.

Closure of the terahertz gap

See DDE as exception to, "Most vacuum electronic devices that are used for microwave generation can be modified to operate at terahertz frequencies, including the magnetron, gyrotron, synchrotron, and free-electron laser. " Similarly, microwave detectors such as the tunnel diode have been re-engineered to detect at terahertz and infrared frequencies as well. However, many of these devices are in prototype form, are not compact, or exist at university or government research labs, without the benefit of cost savings due to mass production.

Research

Molecular biology

Terahertz radiation has comparable frequencies to the motion of biomolecular systems in the course of their function. Modulation of biological and also neurological function is therefore possible using radiation in the range hundreds of GHz up to a few THz at relatively low energies achieving either beneficial or harmful effects.