Stryker


The Stryker is a family of eight-wheeled armored fighting vehicles derived from the Canadian LAV III, which in turn derived from the Swiss Mowag Piranha. Stryker vehicles are produced by General Dynamics Land Systems-Canada for the United States Army in a plant in London, Ontario. It has four-wheel drive and can be switched to all-wheel drive.
The Stryker was conceived as a family of vehicles forming the backbone of a new medium-weight brigade combat team that was to strike a balance between armored brigade combat teams and infantry brigade combat teams. The service launched the Interim Armored Vehicle competition, and in 2000, the service selected the LAV III proposed by GDLS and General Motors Defense. The service named this family of vehicles the "Stryker".
Ten variants of the Stryker were initially conceived, some of which have been upgraded with v-hulls.

Development history

Interim Armored Vehicle competition

In October 1999, U.S. Army Chief of Staff General Eric Shinseki outlined a transformation plan for the Army that would allow it to adapt to post–Cold War conditions. The plan, named "Objective Force", would have the army adopt a flexible doctrine that would allow it to deploy quickly, and be equipped for a variety of operations. An early phase of the plan called for the introduction of an Interim Armored Vehicle, which was intended to fill the capability gap between heavier and heavily armed, but not easily deployable, vehicles, such as the M2 Bradley, and easily deployable vehicles that are lightly armed and protected, such as the Humvee.
The IAV was intended as an interim vehicle until light air-mobile vehicles from the Future Combat Systems Manned Ground Vehicles program came online, none of which did before the program was canceled.

Team General Dynamics–General Motors

In February 2000, General Dynamics and General Motors announced they were partnering to enter the IAV competition. The agreement built off earlier cooperative effort: In January 1999, General Dynamics Land Systems –Canada integrated its Low Profile Turret onto an assault gun version of the LAV III. The General Motors Defense–General Dynamics Land Systems team was awarded the $8 billion contract in November 2000 to produce 2,131 vehicles of a variant of the Canadian LAV III, for equipping six rapid deployment Brigade Combat Teams by 2008. United Defense protested the contract award in December, saying that their proposal cost less than half that of GM–GDLS. The General Accounting Office rejected the protest in April 2001.
U.S. Assistant Secretary of the Army Paul J. Hoeper called the IAV "the best off-the-shelf equipment available in the world in this class", though many in the Army openly wondered whether the vehicles were underclassed compared to the vehicles they might face in battle. In February 2002, the Army formally renamed the IAV as the "Stryker" after two unrelated U.S. soldiers who posthumously received the Medal of Honor: Private First Class Stuart S. Stryker, who died in World War II, and Specialist Four Robert F. Stryker, who died in the Vietnam War.

Production

In 2002, as the Stryker program faced criticism from lawmakers, including former Congressman Newt Gingrich, Pentagon officials mulled reducing the number of planned Stryker Brigade Combat Teams from six to three for a cost savings of $4.5 billion. In October, the Stryker's C-130 air mobility was demonstrated for lawmakers at Andrews Air Force Base. At the Association of the United States Army, Army Chief of Staff Eric Shinseki defended the six-brigade plan and boasted that the C-130 could carry a Stryker "every way but sideways".
Four brigades were funded in the DoD's budget proposal for fiscal year 2004, with Secretary of Defense Donald Rumsfeld deferring a decision on two additional until July 2003. In May, the Army readied the Stryker for initial operating capability at Fort Polk. The New York Times noted the swiftness with which the program had proceeded from its inception in 1999.
In November 2003, 311 Stryker vehicles were deployed in the Iraq War, where they saw mixed success. Never designed for frontline combat, the vehicles were pressed into counterinsurgency roles for which there was an unmet need.
Unexpectedly fierce resistance by insurgents prompted field upgrades to the vehicle's armor. To counter the threat of rocket-propelled grenades, General Dynamics developed slat armor, which added 5,000 lb to the Stryker's total weight. In addition to hindering mobility in the field, the heavy slat armor made transporting the Stryker via C-130 impossible.
In February 2005, Army Chief of Staff General Peter J. Schoomaker told the House Armed Services Committee that "we're absolutely enthusiastic about what the Stryker has done." However, a leaked U.S. Army report from December 2004 said the Stryker was "effective and survivable only with limitations for use in small-scale contingencies." The report, which drew from feedback from Stryker personnel in Mosul, described a litany of design flaws, and said the effectiveness of the vehicles was "getting worse, not better."
The Stryker 105 mm M1128 mobile gun system moved into low-rate initial production in 2005 for evaluation, and entered full production in 2007. General Dynamics Land Systems-Canada assembles the Stryker for the U.S. Army in a plant in London, Ontario.
The vehicle is employed in Stryker Brigade Combat Teams, light and mobile units based on the brigade combat team doctrine that relies on vehicles connected by military C4I networks.
General Dynamics's Robotic Systems division was developing autonomous navigation for the Stryker and several other vehicles with a $237 million contract, until the program was cut in July 2011. The Tank Automotive Research, Development and Engineering Center has tested an active magneto rheological suspension, developed by MillenWorks for the Stryker, at the Yuma Proving Ground, which resulted in greater vehicle stability.
In 2011, over 1,000 Stryker vehicles had been rebuilt by the Anniston Army Depot and returned to operations.

Upgrades

Throughout its years in service, the Stryker has undergone various survivability upgrades and received "kit" applications designed to improve the vehicle's ability to withstand attacks.
The US Army plans to improve its fleet of Stryker vehicles with the introduction of improved semi-active suspension, modifications reshaping the hull into a shallow V-shaped structure, to protect against improvised explosive devices. Included are additional armor for the sides, redesigned hatches to minimize gaps in the armor, blast-absorbent, mine-resistant seating, non-flammable tires, an upgrade to the remote weapon station that allows it to fire while moving, increased 500 ampere electrical generation, a new solid-state power distribution system and data bus, and the automotive and power plant systems improvements to support one-fourth greater gross vehicle weight. The upgraded V-hull will be part of the new StrykShield situational awareness kit, which will address many of these upgrades. Allegheny Technologies' ATI 500-MIL armor steel was designated the primary armored plating for the StrykShield package in 2008.
The upgrade incorporating lessons learned from combat in Afghanistan is designated LAV-H. General Dynamics had a technology demonstrator displayed at the 2007 Association of the United States Army Exposition. In March 2010, it was reported that General Dynamics and Army were working to incorporate a double V-hull into the Stryker design. In July 2010 the Army awarded a $30 million contract to GDLS to start production of the new hull.
In March 2011, the Department of Defense's director of operational test and evaluations testified that the new V-hull design was "not suitable" for long missions in Afghanistan's terrain. The issues are due to the tight driver's compartment and difficulty releasing the seat to extract an incapacitated driver. General Dynamics stated these issues would be corrected before the deployment of the new Stryker version. The upgrade added significant weight to the vehicle, which can cause it to sink into soft ground.
In July 2011, 450 Double V-Hull variants of the Stryker were ordered. The total was increased to 742 a few months later and then to 760 in 2012. DVH Strykers include a new hull configuration, increased armor, upgraded suspension and braking systems, wider tires, blast-attenuating seats, and a height management system.
By August 2012, the Army's Stryker fleet included over 4,187 vehicles, with 10 flat-bottom variants and seven in double V-hull designs. In Afghanistan, it retained a 96 percent readiness rate. To upgrade the existing fleet, the Army has implemented an Engineering Change Proposal program to provide a stronger engine, improved suspension, more onboard electrical power, and next-generation networking and computing technology.
Phase 1 of the ECP includes an electrical power upgrade by replacing the extant 570 amp alternator with a higher current 910 amp alternator, replacing the existing 350 horsepower engine with a 450-horsepower engine, a stronger suspension system to improve mobility at higher weights, and an in-vehicle network to improve data and video sharing between crew stations and more secure and reliable data sharing between vehicle systems. In May 2013, Kongsberg Integrated Tactical Systems was awarded a contract to supply the Driver's Situational Awareness Display and Commander's Situational Awareness Display for the Stryker ECP program, featuring an onboard processor and additional I/O ports for both data and video.
As of January 2014, the U.S. Army had two Stryker Brigades that completed the DVH upgrade. A third brigade, the 2nd Brigade, 2nd Infantry Division at Joint Base Lewis–McChord, was to be fully upgraded by the end of FY 2016. In mid-October 2014, the Army approved the procurement of DVH Strykers for a fourth Stryker brigade, with conversions to 360 vehicles to begin in FY 2017. The Strykers will be the first to receive ECPs to handle the upgrades better than the previous three brigade vehicles, which increased weight, decreased mobility, and added a power burden. Previous DVH-upgraded Strykers will get ECP enhancements when funding is available. ECP enhancements include a more robust 450 HP engine, a more powerful 910 amp power generator, a chassis upgrade to handle the new engine, and improvements to the vehicle's internal network. In 2018, the Army Requirements Oversight Council approved the conversion of all flat bottomed Strykers to the DVHA1 standard. This will be done through a combination of upgrading existing Strykers and new built vehicles. The Army acquisition goal for the fleet of DVHA1 vehicles is 4,459 which will allow all Stryker Brigades to field the vehicle and other units within the army which use the vehicle like M-SHORAD and CBRN detection. Procurement is to last into the 2030s with procurement averaging 165 Strykers a year or roughly half of a Stryker brigades vehicle set.
Upgrading the fourth brigade also kept the production line active through 2018, whereas deciding to upgrade after the line had closed would be more difficult and costly to reopen it. The upgrades of the engine and power generator, suspension, and DVH designate the vehicle the Stryker-A1. The Army plans to increase the lethality of Stryker ICVs by having half equipped with a 30 mm cannon and the other half given a Javelin anti-tank missile on the existing RWS in each brigade. By September 2020, half of the 2nd Brigade, 4th Infantry Division had fielded the third-generation Stryker DVHA1 variant.