Stealth technology


Stealth technology, also termed low observable technology, is a sub-discipline of military tactics and passive and active electronic countermeasures. The term covers a range of methods used to make personnel, aircraft, ships, submarines, missiles, satellites, and ground vehicles less visible to radar, infrared, sonar and other detection methods. It corresponds to military camouflage for these parts of the electromagnetic spectrum.
Development of modern stealth technologies in the United States began in 1958, where earlier attempts to prevent radar tracking of its U-2 spy planes during the Cold War by the Soviet Union had been unsuccessful. Designers turned to developing a specific shape for planes that tended to reduce detection by redirecting electromagnetic radiation waves from radars. Radiation-absorbent material was also tested and made to reduce or block radar signals that reflect off the surfaces of aircraft. Such changes to shape and surface composition comprise stealth technology as currently used on the Northrop Grumman B-2 Spirit "Stealth Bomber".
The concept of stealth is to operate or hide from external observation. This concept was first explored through camouflage to make an object's appearance blend into the visual background. As the potency of detection and interception technologies have increased, so too has the extent to which the design and operation of military personnel and vehicles have been affected in response. Some military uniforms are treated with chemicals to reduce their infrared signature. A modern stealth vehicle is designed from the outset to have a chosen spectral signature. The degree of stealth embodied in a given design is chosen according to the projected threats of detection.

History

Camouflage to aid or avoid predation predates humanity, and hunters have been using vegetation to conceal themselves, perhaps as long as people have been hunting. The earliest application of camouflage in warfare is impossible to ascertain. Methods for visual concealment in war were documented by Sun Tzu in his book The Art of War in the 5th century BC, and by Frontinus in his work Strategemata in the 1st century AD.
In England, irregular units of gamekeepers in the 17th century were the first to adopt drab colours as a form of camouflage, following examples from the continent.
During World War I, the Germans experimented with the use of Cellon, a transparent covering material, in an attempt to reduce the visibility of military aircraft. Single examples of the Fokker E.III Eindecker fighter monoplane, the Albatros C.I two-seat observation biplane, and the Linke-Hofmann R.I prototype heavy bomber were covered with Cellon. However, sunlight glinting from the material made the aircraft even more visible. Cellon was also found to degrade quickly from both sunlight and in-flight temperature changes, so the effort to make transparent aircraft ceased.
In 1916, the British modified a small SS class airship for the purpose of night-time reconnaissance over German lines on the Western Front. Fitted with a silenced engine and a black gas bag, the craft was both invisible and inaudible from the ground but several night-time flights over German-held territory produced little useful intelligence and the idea was dropped.
Diffused lighting camouflage, a shipborne form of counter-illumination camouflage, was trialled by the Royal Canadian Navy from 1941 to 1943. The concept was followed up for aircraft by the Americans and the British: in 1945, a Grumman Avenger aircraft with Yehudi lights reached from a ship before being sighted. This ability was rendered obsolete by radar.
Chaff was invented in Britain and Germany early in World War II as a means to hide aircraft from radar. In effect, chaff acted upon radio waves much as a smoke screen acted upon visible light.
The German U-boat may have been the first stealth submarine. It featured an anechoic tile rubber coating, one layer of which contained circular air pockets to defeat ASDIC sonar. Radar-absorbent paints and materials of rubber and semiconductor composites were used by the Kriegsmarine on submarines in World War II. Tests showed they were effective in reducing radar signatures at both short and long wavelengths. The Type 29 concept was the first design to use faceted sides and angled sail were similar to the F-117 stealth fighter but instead of deflecting radar waves, it was intended to deflect active sonar pings from enemy warships.
In 1956, the U.S. Central Intelligence Agency began attempts to reduce the radar cross-section of the U-2 spy plane. Three systems were developed, Trapeze, a series of wires and ferrite beads around the planform of the aircraft, a covering material with PCB circuitry embedded in it, and radar-absorbent paint. These were deployed in the field on the so-called dirty birds but results were disappointing, the weight and drag increases were not worth any reduction in detection rates. More successful was applying camouflage paint to the originally bare metal aircraft; a deep blue was found to be most effective. The weight of this cost in maximum altitude, but made the aircraft harder for interceptors to see.
In 1958, the CIA requested funding for a reconnaissance aircraft to replace the existing U-2 spy planes, and Lockheed secured contractual rights to produce it. "Kelly" Johnson and his team at Lockheed's Skunk Works were assigned to produce the A-12, which operated at high altitude of and speed of to avoid radar detection. Various plane shapes designed to reduce radar detection were developed in earlier prototypes, named A-1 to A-11. The A-12 included a number of stealthy features including special fuel to reduce the signature of the exhaust plume, canted vertical stabilizers, the use of composite materials in key locations, and the overall finish in radar-absorbent paint.
In 1960, the United States Air Force reduced the radar cross-section of a Ryan Q-2C Firebee drone. This was achieved through specially designed screens over the air intake, and radiation-absorbent material on the fuselage, and radar-absorbent paint.
The United States Army issued a specification in 1968 which called for an observation aircraft that would be acoustically undetectable from the ground when flying at an altitude of at night. This resulted in the Lockheed YO-3A Quiet Star, which operated in South Vietnam from late June 1970 to September 1971.
During the 1970s, the U.S. Department of Defense launched project Lockheed Have Blue, with the aim of developing a stealth fighter. There was fierce bidding between Lockheed and Northrop to secure the multibillion-dollar contract. Lockheed incorporated into its bid a text written by the Soviet-Russian physicist Pyotr Ufimtsev from 1962, titled Method of Edge Waves in the Physical Theory of Diffraction, Soviet Radio, Moscow, 1962. In 1971, this book was translated into English with the same title by the USAF, Foreign Technology Division. The theory played a critical role in the design of American Lockheed F-117 Nighthawk and Northrop B-2 Spirit stealth aircraft. Equations outlined in the paper quantified how a plane's shape would affect its detectability by radar, the RCS. At the time, the Soviet Union did not have supercomputer capacity to solve these equations for actual designs. This was applied by Lockheed in computer simulation to design a novel shape they called the "Hopeless Diamond", a wordplay on the Hope Diamond, securing contractual rights to produce the F-117 Nighthawk starting in 1975. In 1977, Lockheed produced two 60% scale models under the Have Blue contract. The Have Blue program was a stealth technology demonstrator that lasted from 1976 to 1979. The Northrop Grumman Tacit Blue also played a part in the development of composite material and curvilinear surfaces, low observables, fly-by-wire, and other stealth technology innovations. The success of Have Blue led the USAF to create the Senior Trend program which developed the F-117.
In the early 21st century, the proliferation of stealth technology began outside of the United States. Both Russia and China tested their stealth aircraft in 2010. Russia manufactured ten flyable prototypes of the Sukhoi Su-57, while China produced two stealth aircraft, Chengdu J-20 and Shenyang FC-31. In 2017, China became the second country in the world to field an operational stealth aircraft, challenging the United States and its Asian allies.

Principles

Stealth technology is not one technology. It is a set of technologies, used in combinations, that can greatly reduce the distances at which a person or vehicle can be detected; more so radar cross-section reductions, but also acoustic, thermal, and other aspects.

Radar cross-section (RCS) reductions

Almost since the invention of radar, various methods have been tried to minimize detection. Rapid development of radar during World War II led to equally rapid development of numerous counter radar measures during the period; a notable example of this was the use of chaff. Modern methods include radar jamming and deception.
The term stealth in reference to reduced radar signature aircraft became popular during the late 1980s when the Lockheed Martin F-117 stealth fighter became widely known. The first large scale use of the F-117 was during the Gulf War in 1991. However, F-117A stealth fighters were used for the first time in combat during Operation Just Cause, the United States invasion of Panama in 1989. Stealth aircraft are often designed to have radar cross sections that are orders of magnitude smaller than conventional aircraft. The radar range equation meant that all else being equal, detection range is proportional to the fourth root of RCS; thus, reducing detection range by a factor of 10 requires a reduction of RCS by a factor of 10,000.

Vehicle shape